m 3D RAGE™

Windows ® 95
Programmer’s Guide

g N

Technical Reference Manuals
P/N: SDK-C02700 Rev. 1.30

ATI Technologies Inc.

33 Commerce Valley Drive East
Thornhill, Ontario

Canada L3T 7N6

Developer Support: 905-882-2600 ext.6000 &0
Offices: 905-882-2600 %
Fax: 905-882-2620

BBS: 905-764-9404

P/N: SDK-C02700
Revision: 1.30

© 1997 ATI Technologies Inc.

The information contained in this document has been carefully checked and is believed to be entirely
reliable. No responsibility is assumed for inaccuracies. ATI reserves the right to make changes at any time
to improve design and supply the best product possible.

All rights reserved. This document is subject to change without notice and is not to be reproduced or
distributed in any form or by any means without prior permission in writing from ATI Technologies Inc.

ATI, VGAWonder mach8 mach32 mach64 3D RAGE, 8514ULTRA, GRAPHICS ULTRA,
GRAPHICS VANTAGE , GRAPHICS ULTRA+, GRAPHICS ULTRA PRO, GRAPHICS PRO
TURBO 1600, GRAPHICS PRO TURBO, GRAPHICS XPRESSION, WINTURBO,and

WINBOOST are trademarks of ATl Technologies Inc. Wind8@s is a registered trademark of Microsoft

in the U.S. and other countries. All other trademarks and product names are properties of their respective
owners.

Record of Revisions

Record of Revisions

Release Date Description of Changes
0.01 Jan. 96 Preliminary Release.
0.02 Jan. 96 Added Preface; update Intro.
0.03 Feb. 96 Added SML Appendix; general updates.
0.04 Mar. 96 General updates.
0.05 Apr. 96 Typographical corrections; PDF created.
0.06 Jul. 96 Added “Programming with ATI3DCIF” chapter;
general updates.
Added “3D RAGE Il ATI3DCIF Programming”
1.00 Oct. 96 chapter; general updates for 3D RAGE II.
Added “RAGE Pro ATI3DCIF Programming”
110 Aor. 97 chapter; general updates for RAGE PRO
’ pr: additions; Removed Appendix A and DOS init
function.
General updates for (RAGE PRO): VQ
1.20 May 97 compression and u32CIFCaps2 flags.
130 Jul. 97 Added C3D_CODEBOOKENTRY and
' ’ C3D_TLVERTEX plus general updates

© 1997 ATI Technologies Inc.
Proprietary and Confidential

SDK-C02700 Rev. 1.30
i

System Publications Index

System Publications Index

Technical Reference Manuals

« ATI 3D RAGE Windows 95
Programmer’s Guide
(SDK-C02700)

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
iv Proprietary and Confidential

Preface

ATI Company BacCKgrOUNG...........cooiiiiiii oot et be s s e eeseseseeeeees iX

F Y I DTN =T (o] o 1T ST T o o PP PPPPPPPPP X
Introduction

3D RAGE PROQ .. et e e e Xii...ooos

Y F= U I @ 0] a1 (=] o PRSPPI Xiv

SDK SyStemM REQUITEMIEINLS.uiiiiiiie ettt e e e e et e e e e s e e e e a e Xiv

Chapter 1 Overview

T 1o o 11 Tox 1o o PSSP 1-1...

T B -\ [o @] o =T = 11 10] o F= 3R 1-1
S =T =T o oL O PSP 1-1
S g = o = PSS 1-2.
F Y[o] T W =] =T g To (= TP PR PP PPPTPRR 1-2

Chapter 2 Programming with ATISDCIF

e Y (oA EC IO Lo @ =T = L T0] g PP 2-1
INILIAlIZING ATIBD C I ... et a b e e b b naessnnereseees 2-1
Creating a Rendering CONtEXL.......ccoiiiiiiiiiiee it e e e s s sseeeeseeeeaeeeees 2-1
Rendering 3D PrMITIVES.cooiiiieeeece et 2-1
Modifying the Rendering CONTEXL...........uuiiiiiiieeei e 2-4
Getting ATI3DCIF Module and Graphics Subsystem Information................ccccvvveeeennn 2-5

F Y IS L@ | o 4T AV Y/ 0L S 2-6

VEITEX DaAta FOIMALS......ceeei ettt ettt e ettt e e e et e e e et b e e e e e et s e e aenba e e eeennnaaaaanes 2-7

SNAAING MOUES.......eee ettt e ettt e e e e e e s 8. 2

L= U ST, =] o1 T 2-9
o 1S o T Lo = T = U = 2-9
APPIYING @ TEXIUIE. ...ttt e e e e et e e e e e e e e e e e e e 2-12
UNIegistering @ TEXIULRuiiiiiiie ettt e et e e e e e e e e e 2-14
Setting Texture Filtering, Lighting, and Perspective Correction Levels.................... 2-14
Transparent TEXIUrEe MapPPING.......uuu oo i e e e e e e e e e e e e e e aeeesranas 2-15
TeXIUIE® COONAINALES.ottt bbbttt e e e e e e e eeas 2-16

F o] aF= W =1 (=T 0o 1 o T PP PPPPPPPPRPPPN 2-16

APPIYVING FO. ..o :17.....2

F I EC @ | T Y] o o o SRR 2-17

ATI3DCIF ClIPPING SCISSOIS ... eiiiiiiiiiiiiie ittt ettt e e et e e e e e e r e e e e e e 2-18

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30

Proprietary and Confidential v

Table of Contents

Chapter 3 3D RAGE Il ATI3DCIF Programming

[T olo 1811 0] o SRR 3-1...
Determining ATI3DCIF CapabilitieS.........cuvueiiiiiiiiiiiiiiiieeeee e, 3-1
PalettiZEA TEXIUIESui e ettt e e e et e e e e e e e et e e e eaa e e e eebanaeeeene 3-2
A =10 1 (=T £ 3:5

Chapter 4 RAGE PRO ATI3DCIF Programming

[oo (8 ox 1 o] o PP T PO PRRPPPOPPPPPPPRRIP 4-1...
Determining Capabilities...........cooi i 4-1
TEXIUIE COMIPOSITING ..+ttt eee ittt e ettt ettt e e ettt e e e e e e ettt e e e e e e e e e e e e nnnnees 4-1
2] 1= o o 1P P PP PPUPPPPY” -
YT o 1] F= Ui o] o PP PPPPPPPPPPPPPY- . SUPP 4
Y 0 LSTo U] =T AN (o 111 o U 4-3
TEXTIUIE CIAMPING. ...ttt ettt e e bt e e e e e e et e e e s et eeeeeas 4-3
@ 10 = =T T o SRS 4-3....
Y o L=To U] =Tl IR T] 1 [Vo R 4-4
Destination AlPNE TESTING.eeiiiiiieiii e e e e e e e 4-4
Vector Quantization (VQ) COMPIESSION.......cciiiiiiiiiiis i e e e et e e e e e e e et e e e e e e eeasrrans 4-5
TL Vertex Type (C3D_TLVERTEX)uuiiiiiieiiiiiiiei ettt 4-7

Chapter 5 ATI3DCIF API Reference

1] 1o T 11 Tox 1o o VSO SPPSRS 5-1...

WINAOWS 95 FUNCHIONS.ceiieiiiiiietitie ettt e e e e e et e e e e e s et e e e e e e e e s annne 5-1
ATISDCIF _CONEXICIEALE. ...t eieei ettt et e e et e et e e e e eb e e e eaenns 5-1
ATISDCIF_CONtEXIDESIIOY.......ccei i e 5-2
ATI3DCIF _CONIEXISEISTALE. .. . oo e ittt e et ae et e e e e eeaeeeeaanns 5-3
F Y T L@ | 1 S PPP 5-7
F I ST T | 1 o PP PPRPPPPP 5-8
y Y IS L@ | = U= o (=] 4 = =T 11 5-9
ATISDCIF_RENAEIENG..... .ottt e e e e e eeeeeees 5-10
ATISDCIF_RenNderPrimLISt.......cooiii it eeeees 5-11
ATIBDCIF_RENAEIPIIMSIIiiiiiie ettt 5-12
ATISDCIF_RENAEISWILCR.ottt e e e eeeeeeeees 5-13
F NI T O | =T oo PP PPPPPPPP 5-14
ATI3DCIF_TexXturePaletteCreale. . .. oo i e e e e e 5-15
ATI3DCIF_TexturePaletteDeStrQY..........cuuuuiiiiii et e e e e e e 5-16
ATISDCIF_TEXIUINEREGcieiiiiiieeeeee e e 5-17
ATISDCIF _TeXIUIBUNIEG. ... e it eee et e e e e e e ee e e e e 5-18

ATISDCIE DaAt@ Ty S .. e eieee ettt bttt e e e e e e 5-19
ATI3DCIF Fundamental Data TYPES......cuuuuuuiiieeeeieieiiiiiiise e e e e e ettt e e e e e e e eanaanane e e e eeees 5-19
C3D_3DCIFINFQ. ..o bbbt 5-20
C3D_CODEBOOKENTRY.....utttiiiiiiiiiiiiiiiiiieeeeieeeieeeeeeeeteeeeeeeeeeeeaeeattaaaaaataaaaaaaaaaaaaaaaaaaaaaaaens 5-22
CBD _COLOR. ..ottt ——————— 5-23
(O3S I T 2 /| PP 5-24
CBD _EADST. ..ttt 5-26
3D _EASEL ...ttt ettt ettt e e et e et et e et e e et e 5-27
C3D_EASRC ... 5-28
(O3] I T RS EPRRRRRRRURRRRR 5-30

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.

Vi

Proprietary and Confidential

Table of Contents

C3D_ECT TMAP_TYPE. . eoeeeeoeeeeeeee ettt ettt e s e et e s e et es et 5-31
CBD_ EPIXEMT oottt ettt ettt e et e et e et 5-32
C3D_EPRIM...oeoteeeeeee ettt e ettt et e et et ee et e s e et 5-33
CBD _ERSIDL ettt ettt 5-34
C3D_ESHADEcooeoeeeeeeeeeeeeee ettt 5-37
C3D_ETEXCOMPECN. ...eeeteeeeeeeeeeeeeeee oottt 5-38
C3D_ETEXFILTER: ...ttt et et e et e e e et e et e s e s s s e e e s ee e s 5-39
CBD_ETEXFEMT oottt ettt ettt ettt ettt s et ee s 5-40
C3D_ETEXOP ..ottt ettt ettt ettt et et e e s e 5-41
C3D _ ETLIGHT ettt ettt ettt 5-42
C3D_ETPERSPCOReeeoeeeeeeeeeee ettt e ettt ettt 5-43
C3D_EVERTEX ..ottt oottt ettt ettt 5-44
C3D _EZCMP....oeooeeeeeeeeeee ettt ettt ettt ettt ettt ettt 5-45
C3D_EZMODE ...ttt et et e et s ettt ee et et s et et e e e et 5-46
C3D_HRC ...ttt ettt ettt e et e et e ettt ettt 7....5-4
LD HTX ettt ettt ettt ettt 8.....5-4
CBD _ HTXPAL ettt ettt e et 5-49
C3D_PALETTENTRY. ...ttt ettt ettt e et s et 5-50
C3D_PRSDATA ..ottt ettt ettt e ettt et et et et e e s et e et e et er ettt 5-51
C3D _RECT ettt ettt ettt e et et e s et et e et st e e s ettt 5-52
C3D_TLVERTEX ..ottt ettt ettt ettt n s ee e 5-53
CBD_TIMAP ...ttt ettt ettt ettt 5-55
LD _VCF ettt ettt ettt 57..... 5-
(i< 0 V=TSPTSRO 5:58.....
[oic] 0 I/ 1 1= OO 5-59
C3D _VSTRIP oottt ettt ettt e ettt e ettt e et et e st et eer e s et eree 5-60
CBD VT CF oottt ettt ettt ettt ettt ettt 5-61
LD VT ettt ettt ettt ettt 62..... 5-

Chapter 6 3D RAGE / ATI3DCIF
Porting and Performance Notes

T 1o o 11 Tox 1 To] o NSRRI 6-1...
Triangle Size, Performance and Image QUaliLy............uvvrivriiiiiiiiiiiiiiiiiiceeeeeeeee e 6-1
Porting Backgrounds @nd SCENEIY........cciiiiiiiiiiiiiie ettt 6-1
GAME ODJECES. ...t 6:2......
Concurrency and Software OVErNEAM.............ovuuiiiiiiii e e e 6-3
USING the RAGE'S 2D ENQINE.......uiiiiiiiiieiie et e e ee e e 6-3
Additional Tips for IMproving PerformanCe.............uviiiiiiiiiiiii e 6-3
RS [1 0= Y PSS 6:4

© 1997 ATI Technologies Inc.
Proprietary and Confidential

SDK-C02700 Rev. 1.30
vil

Table of Contents

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
viii Proprietary and Confidential

ATI Technologies Inc. is pleased to present this Software Developers Kit for the 3D RAGE, ATI's new
2D, 3D and video graphics accelerator. Current market acceptance indicates that there will be millions
of 3D RAGE-powered PCs and Power Macs installed in 1996-7. ATl is a unique vendor in this
marketplace in that we design and manufacture our own chips and boards, as well as develop the
accompanying software. This “one-stop shopping” benefitis one of the many reasons that ATl is a major
chip supplier to OEMs and motherboard builders, as well as a being a preferred vendor of retail and
OEM add-in graphics boards. Consequently, ATI's products are actively supported by the development
community.

This brief section provides company background and a review of ATI's product line. The 3D RAGE
will be described in detail in the next section.

ATI Company Background

ATI Technologies Inc. was founded in 1986 and now has 700 employees worldwide, with offices in
Toronto, Munich, San Jose and Boston. ATI's fiscal year 1995 revenues were $359 million (Canadian,
over $250 million U.S.), an increase of 55% over the previous year. For the 1996 fiscal year quarter
ending November 30, 1995, ATI's revenues were almost $120 million (Canadian), another record quarter.

ATI’'s current product line is centered around ti@ch64family of graphics controllers, including:

» ATI264-CT, a value priced 2D graphics accelerator
» ATI-264VT, arichly featured video and 2D graphics accelerator
» 3D RAGE (ATI-264GT) an integrated 2D, 3D and video graphics accelerator

The entiremach64family is pin-compatible, allowing OEMs to easily upgrade motherboard
implementations from one chip to the next. In addition to the graphics accelerators, ATI's product line
now includes multimedia products offering video-in, video conferencing, TV tuner capability and MPEG
decoding. This broad product offering and upgrade capability has solidified relationships with PC OEMs
world wide. ATI expects to ship over 8 million graphics chips in 1996. With additional fabrication
capacity coming on-line by the end of 1996, ATl is planning to ship 15 million chips in 1997.

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential iX

ATI Developer Support

ATI Developer Support

ATI appreciates the support our products have received from the development community to date and
we continue to improve our developer support program. Our headquarters-based Developer Relations
group is adding staff and resources. In addition, ATI will be setting up regional Developer Conferences
to promote support for the 3D RAGE and get additional feedback from the development community.
Please contact the Developer Relations group so that your input to our product planning process can
continue. Developer Relations may be reached at:

Developer Relations

ATI Technolgies Inc.

33 Commerce Valley Drive East

Thornhill, Ontario

Canada, L3T 7N6

Tel: 905-882-2600, x 6000, 8:30 a.m. to 6:00 p.m. Eastern Time
Fax: 905-882-9339

Email: devrel@atitech.ca

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.

X

Proprietary and Confidential

The ATI 3D RAGE family of chips are highly integrated graphics accelerators with superior support for
3D and motion video. Itis ideal for gaming, consumer PCs, and multimedia workstations. The 3D RAGE
will lead the implementation of 3D functionality across the ATI product line over the next two years.

The core hardware accelerated 3D features of the 3D RAGE include:

* seven texture filtering modes

» perspectively correct texture mapping

* video textures

» palettized textures (in the 3D RAGE Il and later)

» Gouraud shading

 alpha blending

» fog effects

« dithering of limited colors (8 and 16 bpp)

» 16 bit z-buffer (in the 3D RAGE Il and later)

» complete 2D and video feature set

 texture compositing (RAGE Pro and later)

 vector quantization (VQ) compression (RAGE Pro and later)
This rich feature set was determined by researching the needs of the development community. These
are the most common 3D features utilized in 3D games, web content and other applications. AT also
reviewed the needs of the major 3D API (Application Programming Interface) developers, such as

Microsoft with their RealityLab and Direct3D APIs, Apple Computer with their QuickDraw3D API,
Intel with their 3DR API, and others.

For accessing accelerated 3D features on the 3D RAGE under Windows 95, ATI provides a proprietary
interface called ATI3DCIF (ATl 3D C InterFace). This low-level interface provides a set of functions for
executing and managing 3D rendering operations such as primitive drawing, texture mapping, color shading,
and color blending. Under Windows 95, applications may use Microsoft's DirectDraw to create the double
buffer and texture map surfaces required by ATI3DCIF.

ATI3DCIF is a 3D rendering interface. It does not perform 3D geometric transformations. It also does
not implement any 2D blitting operations, as these services are provided by the GDI and DirectDraw
under Windows 95.

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential Xi

3D RAGE PRO

NOTE: ATI3DCIF cannot be used with Direct3D within the same application (although ATISDCIF
may be, and usually is, used with DirectDraw).

3D RAGE PRO

The 3D RAGE PRO is the third generation chipset in the 3D RAGE product line. Itis a highly integrated
64-bit graphics accelerator featuring full 2D acceleration, TV quality motion video and superior 3D
acceleration. It incorporates comprehensive support for Intel's Accelerated Graphics Port (AGP)
including 66 or 133 MHz fully pipelined operation with sideband.

The 3D RAGE PRO provides the following features:

General Features

PCI version 2.1 with full bus mastering and scatter / gather support.

Bi-endian support for compliance on a variety of processor platforms.

Fast response to host commands:

e 128-level command FIFO

» 32-bit wide memory-mapped registers

« Programmable flat or paged memory model with linear frame buffer access

Triple 8-bit palette DAC with gamma correction for true WYSIWYG color. Pixel rates up to
220MHz.

Supports DRAM, EDO DRAM, SDRAM and SGRAM at up to 100MHz memory clock providing
bandwidths up to 800MB/sec across a 64-bit interface.

Supports WRAM and 128-bit external DAC for ultra-high end configurations

Flexible graphics memory configurations: 1MB up to 8MB; 256Kx4/8/16/32, 512Kx32; dual
CAS.

Memory upgrade via industry-standard SGRAM SO-DIMM, for reduced board area and higher
memory speeds.

DDC1 and DDC2B+ for plug and play monitors.

Power management for full VESA DPMS and EPA Energy Star compliance.

Integrated hardware diagnostic tests performed automatically upon initialization.

High quality components through built-in SCAN, CRC and chip diagnostics

Single chip solution in 0.35mm, 3.3V CMOS technology, with multiple package options.
Comprehensive HDKs, SDKs and utilities augmented by full engineering support.
Complete local language support (contact ATI for current list).

3D Acceleration

Integrated 1 million triangles set-up engine, which reduces CPU and bus bandwidth requirements
and dramatically improves performance of small 3D primitives

4KB on-chip texture cache, which dramatically improves large triangle performance.
Complete 3D primitive support: points, lines, triangles, and quadrilaterals in lists and strips
Hidden surface removal using 16-bit z-buffering

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.

Xil

Proprietary and Confidential

3D RAGE PRO

Edge anti-aliasing

Sub-pixel and sub-texel accuracy

Gouraud, specular, flat, and solid shaded polygons

Perspectively correct mip-mapped texturing with chroma-key support

Single pass bi- and tri-linear texture filtering for vastly improved bi- and tri-linear performance
Texture compositing

Special effects such as alpha blending, fog, video textures, texture lighting, reflections, shadows,
spotlights, LOD biasing and texture morphing

Dithering support in 8bpp and 16bpp for near 24bpp quality in less memory

Texture compression of up to 8:1 using vector quantization

Filtered horizontal/vertical RGB scaler for high-quality stretching of 3D display

Extensive 3D mode support: RGBA32, RGBA16, RGB16, RGB8, ARGB4444, YUV444,YUV422
Compressed texture modes: YUV422, CLUT4 (ClI4), CLUTS8 (CI8), VQ

2D Acceleration

Hardware acceleration of Bitblt, Line Draw, Polygon / Rectangle Fill, Bit Masking, Monochrome
Expansion, Panning/Scrolling, Scissoring, full ROP support and h/w cursor (up to 64x64x2).

Game acceleration including support for Microsoft's DirectDraw: Double Buffering, Virtual
Sprites, Transparent Blit, Masked Blit and Context Chaining.

» Acceleration in 4/8/16/24/32 bpp modes. Packed pixel support (24bpp) enables true colorin 1IMB

configurations.

Motion Video Acceleration

Smooth video scaling and enhanced YUV to RGB color space conversion for full-screen /
full-speed video playback.

Front and back end scalers support multi-stream video for video conferencing and other applications.
Filtered horizontal/vertical, up/down, scaling enhances playback quality.
Enhanced line buffer allows vertical filtering of native MPEG-2 size (720x480) images.

DVD / MPEG-2 decode assist provides dramatically improved frame rate without incurring cost
of dedicated hardware.

Special filter circuitry eliminates video artifacts caused by displaying interlaced video on
non-interlaced displays.

Intercast capable video capture interface.

Bi-directional bus mastering engine with planar YUV to packed format converter for superior
MPEG2 and video conferencing.

Hardware mirroring for flipping video images in video conferencing systems.
Supports graphics and video keying for effective overlay of video and graphics.
YUV to RGB color space converter with support for both packed and planar YUV:
* YUV422, YUV410, YUV420

* RGB32, RGB16/15, RGB8, Mono

ATI Multimedia Channel

16-bit, bi-directional video port allows direct connection to popular video upgrades such as:

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential Xiii

Manual Contents

* video capture / video conferencing
» Hardware MPEG2 / DVD player
e TV tuner with Intercast support

Manual Contents

This manual serves as a programming guide to the ATISDCIF. It is composed of the following chapters:
Chapter 1: Overview

This chapter presents an overview of the ATISBDCIF programming model. It describes the main
components of the 3D graphics pipeline on the 3D RAGE. The chapter also describes the function groups
in the interface and how they are used within the programming model.

Chapter 2: Programming with ATISDCIF

This chapter describes the basic operations for setting up and using ATISDCIF.

Chapter 3: 3D RAGE Il ATI3DCIF Programming

This chapter covers programming issues which only apply to the ATl 3D RAGE Il graphics accelerator.

Chapter 4. RAGE Pro ATI3DCIF Programming

This chapter covers programming issues which only apply to the ATI RAGE Pro graphics accelerator.

Chapter 5: ATI3BDCIF API Reference

This chapter provides a comprehensive reference of the ATI3DCIF functions and data types.

Chapter 6: 3D RAGE /ATI3DCIF Porting and Performance Notes

This chapter covers ATI3DCIF and 3D RAGE porting and performance issues. It provides guidelines for porting
existing applications to the 3D RAGE and discusses factors which affect image quality and performance.

SDK System Requirements
The following are the system requirements for this SDK:
e 486/Pentium system
e 32-bit PCI Local Bus 2.1
» 3D RAGE accelerator graphics board

» Microsoft DirectX Games Development kit (DirectX 2 for RAGESDK Beta 6 and greater)
* Microsoft Visual C/C++ 4.0 (for Windows 95 example projects)

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
Xiv Proprietary and Confidential

Introduction

ATI3DCIF is an ATI proprietary programming interface that exposes the 3D hardware rasterization
functionality of the ATI 3D RAGE graphics accelerator. The focus of ATI3DCIF is to provide client
applications with an interface for accelerating 3D rendering operafidresefore, ATISDCIF is a
rendering interface, and as such, does not perform any 3D geometric transformations, 2D rendering
operations, or memory management. Applications may use Microsoft’s DirectX or the GDI to perform
memory management and 2D blitting operations.

3D Drawing Operations

ATI3DCIF accelerates the drawing of quadrangles, triangles, and lines. The 3D RAGE supports a rich
set of orthogonal 3D drawing operations for texture mapping, shading, and alpha blending. The hardware
can be conceived as a three-stage graphics pipeline with a Texture Mapper, Shader, and Alpha Blender
stage, where each stage is dedicated to carrying out one of the rendering operations.

Texture > Shader » Alpha
/ Mapper Blender \

Frame Buffer

When all three components are on, the Shader is applied to texels fetched from the frame buffer by the
Texture Mapper to simulate texture lighting effects, and the resulting pixels are passed on to the Alpha
Blender. The operation of each element is described below.

Texture Mapper

Texels from the frame buffer are read into the pixel pipeline and filtered by one of the programmable
filtering algorithms. The resulting texel may optionally be compared against a chroma key. If the texel
matches the chroma key, it is discarded and the destination is left unaltere; otherwise, the texel is passed
on to the Shader stage of the pipe.

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 1-1

3D Drawing Operations

Shader

The Shader generates colors that can be applied to texels supplied by the Texture Mapper. If the Texture
Mapper is off, these colors are passed to the Alpha Blender stage unaltered. The mechanism used to
generate colors by the Shader is programmable, and allows for different shading methods such as solid,
flat, and Gouraud shading. If texture mapping is on, the method used to mix texels with the colors
generated by the Shader (texture lighting) is also programmable. The resulting pixels from this stage
are passed on to the Alpha Blending stage.

Alpha Blender

The alpha blender simply blends the output of the Shader stage with the pixel at the destination address
in the frame buffer. Various source and destination alpha blending methods are available on the
3D RAGE. Alpha blending may be used to achieve special effects such as translucency and transparency.

The ATI3DCIF interface is composed of the following functional groups:

* Library Initialization functions
» Texture Management functions
» Context Management and Rendering functions

Library Initialization functions allow the client application to load and unload the ATISDCIF module.
Library initialization must be performed prior to using any other library functions. and library termination
must be performed after the client applications has finished using the interface to free resources.

Texture Management functionsare used by ATI3DCIF to manage the use of textures. Textures are
registered with ATI3DCIF and given a unique handle. This handles is used to select the texture for
rasterization during the texture mapping process.

Context Management functionsallow the client application to create and modify a rendering context.
A rendering context represents the collection of rendering states currently set for the 3D RAGE
accelerator. The Rendering functions allow the application to render line, triangle, or quadrilateral
primitives in primitive lists or strips.

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.

1-2

Proprietary and Confidential

Basic ATI3DCIF Operations

This section describes basic operations for setting up and using ATISDCIF. It covers ATI3DCIF
initialization and describes the fundamentals of the ATISDCIF rendering model, introducing concepts
such as the rendering context and 3D rendering blocks. Finally, it demonstrates how an application can
retrieve ATI3DCIF module and graphics subsystem information.

Initializing ATI3DCIF

The first step to use ATI3DCIF is to load and initialize the ATI3DCIF.DLL module. This is done by
calling ATI3DCIF_Init This DLL must be loaded before any ATI3DCIF functions are called. Before
the application terminates, it must unload ATI3DCIF.DLL by calikig3DCIF_Term

Creating a Rendering Context

After the ATISBDCIF module is loaded, the application must create a rendering context to use the 3D
features of the 3D RAGE. A rendering context is created by c#lllM§DCIF_ContextCreaté/Nhen
arendering context is created, the RAGE’s 3D rendering components are configured into a default state.
This rendering context is identified by a unique handle, and the application must pass this handle to
ATI3DCIF functions whenever referencing or modifying the rendering context. For example, to change
the context shading mode, the application musddBDCIF_ContextSetStaweth the context handle

as the first argument, and the appropriate state modification flag and data as the other arguments.

When the application no longer needs the rendering context, the former may destroy the latter by calling
ATI3DCIF_ContextDestroyAn application must destroy the rendering context before terminating, and
before callingATI3DCIF_Termto unload the ATI3DCI module.

Rendering 3D Primitives

When an application is ready to render 3D primitives, it must set the 3D RAGE into a 3D operating
mode. While in this mode, the application will not be able to perform 2D operations, such as blitting,
rectangle fills, or page flipping. The application should perform all 3D rendering operations while in 3D
mode and switch back to 2D mode to perform 2D operations.

To switch to 3D mode, the application must éalI3DCIF_RenderBegitwWhile in this mode, primitive

lists and strips may be rendered by calig3DCIF_RenderPrimLisbr ATI3DCIF_RenderPrimStrip
respectively. To switch back to 2D rendering mode after rendering all the 3D primitives, the application
must callATI3DCIF_RenderEnd

When switching between 2D and 3D mod&EI3DCIF_RenderBegisaves the state of the 2D engine,

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 2-1

Basic ATI3DCIF Operations

andATI3DCIF_RenderEndestores the state of the 2D engine. To minimize the overhead incurred while
saving and restoring, the applications should minimize the numbBar8DCIF_RenderBegir
ATI3DCIF_RenderEnblocks (3D rendering blocks) in each frame update. Ideally, there should be only
one 3D rendering block per frame update, and all 3D primitive lists or strips should be rendered within
this block. To accomplish this, the application may need to reorganize the order in which rendering
operations are performed. 2D and 3D operations should be separated, and all 3D operations should be
performed within one 3D rendering block whenever possible.

The following example demonstrates the recommended method for mixing 2D and 3D rendering
operations during frame updates:

Example 1: recommended

/12D rendering operations (e.g. background rectanglefills, bitmap blits, etc.)

/I now switch to 3D mode and draw the 3D primitives. hRC is a rendering
/I context created by calling ATI3DCIF_ContextCreate
ATI3DCIF_RenderBegin (hRC);

/l render 3D primitives
ATI3DCIF_RenderPrimList (PrimListl, PrimListLNumVerts);

ATI3DCIF_RenderPrimList (PrimList2, PrimList2NumVerts);

ATI3DCIF_RenderPrimStrip (PrimStripl, PrimStripINumVerts);

/I now switch back to 2D mode
ATI3DCIF_RenderEnd ();

/I perform 2D operations (such as page flipping, etc.) ...
Here are a couple of examples showing non-optimal and incorrect ways to perform the same operations:

Example 2: not recommended

/[Thisexampleshowsunnecessary ATI3DCIF_RenderBeginand ATI3DCIF_RenderEnd
/I calls which incur unwanted overhead. Since no 2D operations are being

/I performed in between the primitive rendering calls, all these calls can be

/I lumped within one ATI3DCIF_RenderBegin - ATI3DCIF_RenderEnd block.

/12D rendering operations (e.g. background rectanglefills, bitmap blits, etc.)

ATI3DCIF_RenderBegin (hRC);
ATI3DCIF_RenderPrimList (PrimListl, PrimListINumVerts);
ATI3DCIF_RenderEnd ();

ATI3DCIF_RenderBegin (hRC);
ATI3DCIF_RenderPrimList (PrimList2, PrimList2NumVerts);
ATI3DCIF_RenderEnd ();

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
2-2 Proprietary and Confidential

Basic ATI3DCIF Operations

ATI3DCIF_RenderBegin (hRC);
ATI3DCIF_RenderPrimStrip (PrimStripl, PrimStripINumVerts);
ATI3DCIF_RenderEnd ();

/I perform 2D operations (such as page flipping, etc.) ...

Example 3: not recommended

/I This example demonstrates a situation which may be optimized by reordering
/I 2D and 3D rendering operations such that all 3D operation are performed
[/l within one 3D rendering block, as in Example 1.

/I 2D rendering operation (e.g. blit, color fill, etc.)

ATI3DCIF_RenderBegin (hRC);

ATI3DCIF_RenderPrimList (PrimList1, PrimListINumVerts);
ATI3DCIF_RenderEnd ();

/I 2D rendering operation (e.g. blit, color fill, etc.)

ATI3DCIF_RenderBegin (hRC);

ATI3DCIF_RenderPrimList (PrimList2, PrimList2NumVerts);
ATI3DCIF_RenderEnd ();

/I 2D rendering operation (e.g. blit, color fill, etc.)

ATI3DCIF_RenderBegin (hRC);

ATI3DCIF_RenderPrimStrip (PrimStripl, PrimStripINumVerts);
ATI3DCIF_RenderEnd ();

Example 4: incorrect

/I This example demonstrates the incorrect way to mix 2D and 3D rendering
/I operations.

ATI3DCIF_RenderBegin (hRC);
ATI3DCIF_RenderPrimList (PrimListl, PrimListINumVerts);
/I perform a 2D operation such as a rect fill or 2D blit
.../l ERROR: should not perform 2D operations within a 3D rendering
// block!!!
/'If doing the 2D operation at this point is unavoidable, exit the
/I 3D rendering block by calling ATI3DCIF_RenderEnd, perform the 2D
/I operation, and begin a new 3D rendering block by calling
/I ATI3DCIF_RenderBegin
ATI3DCIF_RenderPrimList (PrimList2, PrimList2NumVerts);

ATI3DCIF_RenderPrimStrip (PrimStripl, PrimStripINumVerts);

ATI3DCIF_RenderEnd ();

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 2-3

Basic ATI3DCIF Operations

Modifying the Rendering Context

Rendering states within the rendering context may be modified by cAllPCIF _ContextSetState

The first argument to this function is the handle of the rendering context which will be modified. The
second argument is@G3D_ERSIDenumeration type specifying which rendering state or property will

be modified. The last argument is a C3D_UINT32 which has a different meaning depending on which
state is being modified. Typically, itis a pointer to an ATI3DCIF enumeration or structure type specifying
the new state or property.

ATI3SDCIF_ContextSetStateeds to save and restore the state of the 2D engine on entry and exit in the
same manner as thgd I13DCIF_RenderBegiandATI3DCIF_RenderEndunctions. If
ATI3DCIF_ContextSetStaig called outside of a 3D rendering block, it will explicitly save and restore
the 2D engine state, and the application will incur overhead. However, if it is called within a 3D rendering
block, the save and restore operation will not be performed, and no additional overhead will be incurred.
Therefore, the application should attempt to group@lBDCIF_ContextSetStatalls within a 3D

rendering block.

The following example shows the recommended method for cAlliM@DOCIF_ContextSetState

Example 5: recommended

/I This example changes the context shading mode from the default smooth
/I (gouraud) state to flat

C3D_ESHADE eshade = C3D_ESH_FLAT;

/I switch to 3D mode
ATI3DCIF_RenderBegin (hRC);

/I change the rendering context shading mode
ATI3DCIF_ContextSetState (hRC, C3D_ERS_SHADE_MODE, &eshade);

/I render a primitive list using flat shading
ATI3DCIF_RenderPrimList (PrimList, PrimListNumVerts);

/I restore smooth shading
eshade = C3D_ESH_SMOOTH;
ATI3DCIF_ContextSetState (hRC, C3D_ERS_SHADE_MODE, &eshade);

/I now switch back to 2D mode
ATI3DCIF_RenderEnd ();

Example 6: not recommended

/I This example also changes the context shading mode from the default smooth
/I gouraud) state to flat. However, ATI3DCIF_ContextSetState calls are made
/I outside of the 3D rendering block. As aresult, the state ofthe 2D engines

/l will be saved and restored with each of these calls in addition to the

/I ATI3DCIF_RenderBegin and ATI3DCIF_RenderEnd calls.

C3D_ESHADE eshade = C3D_ESH_FLAT,;

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
2-4 Proprietary and Confidential

Basic ATI3DCIF Operations

/I change the shading mode to flat
ATI3DCIF_ContextSetState (hRC, C3D_ERS_SHADE_MODE, &eshade);

/I switch to 3D mode
ATI3DCIF_RenderBegin (hRC);

/l render a primitive list using flat shading
ATI3DCIF_RenderPrimList (PrimList, PrimListNumVerts);

/I now switch back to 2D mode
ATI3DCIF_RenderEnd ();

/I restore smooth shading
eshade = C3D_ESH_SMOOTH;
ATI3DCIF_ContextSetState (hRC, C3D_ERS_SHADE_MODE, &eshade);

Getting ATI3SDCIF Module and Graphics Subsystem Information

An application may retrieve information about ATI3DCIF capabilities and the graphics subsystem by
calling ATI3DCIF_GetInfo This function takes a pointer taC8D_3DCIFINFOstructure as its only
argument. Upon return, this structure contains information about the module and the graphics subsystem,
including the ASIC identification number, ASIC revision, pointer to the frame buffer, and total RAM

on the accelerator card.

The syntax for th€3D_3DCIFINFOstructure is as following:

typedef struct {
C3D_UINT32 u32Size; Il size of structmustbeinitialized by client
C3D_UINT32 u32FrameBuffBase; // Host pointer to frame buffer base
C3D_UINT32 u320ffScreenHeap; // Host pointer to off-screen heap
C3D_UINT32 u320ffScreenSize; // size of off-screen heap

C3D_UINT32 u32TotalRAM,; Il total amount of RAM on the card
C3D_UINT32 u32ASICID; /I ASIC Id. code

C3D_UINT32 u32ASICRevision; // ASIC revision

C3D_UINT32 u32CIFCapsi; /I ATI3DCIF capabilities field 1
C3D_UINT32 u32CIFCaps2; /I ATI3DCIF capabilities field 2
C3D_UINT32 u32CIFCaps3; /I ATI3DCIF capabilities field 3
C3D_UINT32 u32CIFCaps4; /I ATISDCIF capabilities field 4
C3D_UINT32 u32CIFCaps5; /I ATI3DCIF capabilities field 5

} C3D_3DCIFINFO, * PC3D_3DCIFINFO;

u32Size must be set to the size of @3 _3DCIFINFObefore callingATI3DCIF_Getinfo otherwise,
ATISDCIF_GetInfowill return a C3D_EC_BADPARAM error. On return, u32FrameBuffBase should
contain a host pointer to the base of the frame buffer. u320ffScreenHeap should contain a host pointer
to the start of the off-screen video memory heap. u320ffScreenSize should specify the size of the
off-screen heap. The total amount of RAM on the card should be in u32TotalRAM. u32ASICID should
hold the RAGE ASIC ID code, and u32ASICRevision the ASIC revision code. u32CIFCaps1 should
report the ATISBDCIF module’s capabilities. u32CIFCaps2 to u32CIFCaps5 are capability fields
(u32CIFCaps3 to u32CIFCaps5 are currently reserved for future use).

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 2-5

ATI3DCIF Primitive Types

NOTE: In version 4.02.0217 of ATI3DCIF, the u32CIFCaps member was added to this structure. In
version 4.03.0039 of ATI3DCIF, the u32CIFCaps member was renamed u32CIFCaps1, and four more
capabilities fields, u32CIFCaps2 to u32CIFCaps5, were added to this structure. In version 4.03.2511
of ATI3DCIF, the u32CIFCaps2 member was defined to support additional capabilities under RAGE
Pro. u32CIFCaps3 to u32CIFCaps5 are currently unused and are reserved for future use. The
application must ensure that the ATI3DCIF module is version 4.03.0039 or greater to use the
u32CIFCapsl member, and version 4.03.2511 or greater to use the u32CIFCaps2 member. The
ATI3DCIF.DLL version number may be determined by right clicking on the file under Windows
Explorer, selecting Properties, and clicking on the Version tab. ATI3DCIF.DLL is located in the
Windows 95 SYSTEM directory.

The following table lists u32CIFCaps1 flags:

C3D_CAPS1_BASE base line functionality

C3D_CAPS1 FOG fog support

C3D_CAPS1 _POINT point primitive support

C3D_CAPS1 RECT screen-aligned rectangle primitive support

C3D_CAPS1 Z BUFFER Z buffer support
C3D_CAPS1_Cl4_TMAP 4 bit color index texture support
C3D_CAPS1 _CI8 TMAP 8 bit color index texture support
C3D_CAPS1 LOAD_OBJECT bus-master data loading support
C3D_CAPS1_DITHER_EN dithering on/off support

C3D_CAPS1 _ENH_PERSP enhanced perspective levels available
C3D_CAPS1_SCISSOR fixed origin clipping region support
C3D_CAPS1_PROFILE_IF profile interface available

C3D_CAPS1_BASE represents the base line functionality available in versions 4.02.0217 and earlier
of ATI3DCIF. All other capabilities were added after 4.02.0217.

NOTE: Z buffers, CI8 and Cl4 textures are only available on the ATl 3D RAGE Il graphics accelerator
or later. RAGE Il programming issues are covered in the next chapteBZ8#Caps2member was

added to the C3D_3DCIFINFO structure to support additional capabilities under RAGE Pro. Please see
Chapter 4RAGE PRO ATI3DCIF Programminépr more information on this member.

ATI3DCIF Primitive Types

ATI3DCIF supports line, triangle, rectangle, point, and quadrilateral primitive types. The primitive type
specifies the geometric interpretation of a vertex set during rasterization. For example, if the primitive
type is set to triangle, subsequent callaTé3DCIF_RenderPrimListill interpret the list of vertices

as triangles and will consume three vertices for each triangle drawn.

The primitive types are represented by@3_ EPRIMenumeration type. The following is a list of its
enumeration constants:

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
2-6 Proprietary and Confidential

Vertex Data Formats

C3D_EPRIM_LINE line primitive

C3D_EPRIM_TRI triangle list or strip primitive
C3D_EPRIM_QUAD guadrilateral list or strip primitive
C3D_EPRIM_RECT screen aligned rectangle strip or list primitive

C3D_EPRIM_POINT point list or strip primitive

The default primitive type set on rendering context creation is C3D_EPRIM_TRI. To modify the
primitive type, callATI3BDCIF_ContextSetStateith the second argument set to
C3D_ERS_PRIM_TYPE and the third argument set to the addre<33id sEPRIMenumeration
specifying the new primitive type.

NOTE: The C3D_EPRIM_RECT and C3D_EPRIM_POINT primitive types are not available on some
earlier versions of ATI3DCIF. Applications should call ATI3DCIF_Getinfo and query the u32CIFCaps1
member of the C3D_3DCIFINFO structure to verify the availability of these primitive types.

Vertex Data Formats

ATI3DCIF offers a number of vertex data formats to represent vertices. The choice of which format to
use depends on the vertex information needed. For example, if an application does not perform texture
mapping, it can represent vertices in a format that does not hold texture coordinate data. Thevertex data
type may be changed by calling ATISDCIF_ContextSetState.

The following structures may be used to represent vertex data:

typedef struct {
C3D_FLOAT32x, Y, z; /I FLOATING point type
} C3D_VF, * C3D_PVF; /I identified by C3D_EV_VF
typedef struct {
C3D_FLOAT32 x, Y, z; /I FLOATING point type
C3D_FLOAT32r, g, b, a; /I identified by C3D_EV_VCF
} C3D_VCF, * C3D_PVCF;
typedef struct {
C3D_FLOAT32x, Y, z; /l FLOATING point type
C3D_FLOAT32 s, t, w; /I identified by C3D_EV_VTF
} C3D_VTF, * C3D_PVTF;
typedef struct {
C3D_FLOAT32x, Y, z; / FLOATING point type
C3D_FLOAT32 s, t, w; /I identified by C3D_EV_VTCF

C3D_FLOAT32r, g, b, a;
} C3D_VTCF, * C3D_PVTCF;

The vertex data type set on context creatidd3®_VTCFE The vertex data type may be changed by
calling ATI3DCIF_ContextSetStat€heC3D_EVERTEXnumeration type may be used to specify the
new vertex data typ&€£3D_EVERTEXncludes the following enumeration constants:

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 2-7

Shading Modes

C3D_EV_VF vertex represented by C3D_VF structure
C3D_EV_VCF vertex represented by C3D_VCF structure
C3D_EV_VTF vertex represented by C3D_VTF structure
C3D_EV_VTCF vertex represented by C3D_VTCF structure

The second argument4d I3DCIF_ContextSetStasbould be setto C3D_ERS_VERTEX_TYPE. The third
argument should be set to the addres€8aEVERTEXnumeration specifying the new vertex data format.

Shading Modes

Primitives can be rendered in solid, flat, or Gouraud shading under ATI3DCIF.

When solid shading is enabled, all primitives are rendered in the rendering context’s current solid color.
This color is set to black on context creation. It may be changed by ¢alliBBCIF_ContextSetState

with the second argument set to C3D_ERS_SOLID_CLR and the third argument set to the address of a
C3D_COLORstructure specifying the new solid color. T®&8D_COLORstructure has the following

syntax:

typedef union {
struct {
unsigned r: 8; // 8 red bits
unsigned g: 8; // 8 green bits
unsigned b: 8; // 8 blue bits
unsigned a: 8; // 8 alpha bits
h
C3D_UINT32 u32All;
} C3D_COLOR, * C3D_PCOLOR;

Regardless of the pixel bit-depth of the display mode, colors must always be entered in RGBA 8888
format in theC3D_COLORstructure. ATI3DCIF will perform the necessary conversions to render in
the pixel format of the display mode.

The shading mode may be set by callxfig3DCIF_ContextSetStateith the second argument set to
C3D_ERS_SHADE_MODE. The third argument must be set to the addre€3bf #SHADE
enumeration type specifying the new shading m@@& ESHADEnNcludes the following constants:

C3D_ESH_NONE the shading color is undefined
C3D_ESH_SOLID shade using the solid color from the rendering context
C3D_ESH_FLAT shade using the color of the last vertex in the primitive to color the primitive

C3D_ESH_SMOOTH shade the primitive by linearly interpolating the color of its vertices from
vertex to vertex

Flat shading renders the entire primitive in the color of the last vertex in the primitive. Gouraud shading
interpolates the color of each vertex in the primitive from vertex to vertex, resulting in a smooth gradation
of color across the face of the primitive. It is the default shading mode set on context creation.

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
2-8 Proprietary and Confidential

Texture Mapping

Texture Mapping

The texture mapping operations supported by ATI3DCIF are perspective correction, texture lighting,
texture filtering, texture transparency using either a chroma key in the RGB channel or a bit mask in the
alpha channel, and mipmapping. All these operations are performed by the 3D RAGE hardware.

There are a number of requirements for texture mapping with the 3D RAGE. Textures must be placed
in video memory. For this reason, ATI3DCIF does not support textures stored in system memory. Also,
The width and height of each texture must be a power of two and cannot exceed 1024x1024.

Registering a Texture

The first step in using a texture is to load it into a region of video memory. The next step is to register
the texture with ATI3BDCIF. Registration provides ATI3SDCIF with important information about the
texture, such as its location in video memory, width, height, pixel format and bit depth, chroma key
color, and whether it is a mipmap or not. When registered, the texture is assigned a unique handle which
is used to select it during rendering operations.

Atexture is registered by callidgrI3DCIF_TextureRedl he firstargument is a pointer t€&8D_TMAP
structure containing information about the texture that the client application must fill prior to calling this
function. This structure specifies how the RAGE should interpret the texture stored in video memory.
The second argument is a pointer 1863D_HTXtexture handle which will be set to a unique value by
ATI3DCIF if the texture is successfully registered.

The C3D_TMAP structure has the following syntax:

typedef struct {
C3D_UINT32 u32Size; /I size of structure
C3D_BOOL bMipMap; Il is texture a mip map
C3D_PVOID apvLevels[cu32MAX_TMAP_LEV]; // array of pointers to map

Nevel
C3D_UINT32 u32MaxMapXSizelLg2; // log 2 X size of largest map
C3D_UINT32 u32MaxMapYSizelLg2; //log 2 Y size of largest map
C3D_ETEXFMT eTexFormat; /I texel format
C3D_COLOR clrTexChromaKey; // specify texel transparency color
C3D_HTXPAL htxpalTexPalette; // texture palette handle
} C3D_TMAP, * C3D_PTMAP;

u32Size should be set to the size of @3 _TMAPstructure. If this member is not set correctly,
ATISDCIF_TextureRewill return the C3D_EC_BADPARAM error code.

bMipMap is a BOOL specifying whether the texture is a mipmap or not. Setting it to TRUE will cause
the RAGE to interpret the texture as a mipmap. Setting it to FALSE will cause the RAGE to interpret
the texture as an ordinary texture map.

apvLevels is an array of host pointers to the individual maps which compose a mipmap texture. If
bMipMap is set to TRUE, apvLevels contains one or more valid elements. The first element (index 0)
points at the base map and subsequent elements point at sequentially smaller maps. If bMipMap is set
to FALSE, only the first element in the array is valid, and the rest are ignored. When bMipMap is
TRUE, the array contains n+1 pointers to mip levels, where n is equal to the log 2 of either the width or
height of the base map, whichever is larger.

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 2-9

Texture Mapping

The following tables show how the apvLevels array should be initialized for a 256x128 and a 512x512 mipmap:

Example for a mipmap with a 256x128 base map

apvLevels[0]
apvlLevels[1]
apvlLevels[2]
apvLevels[3]
apvlLevels[4]
apvLevels[5]
apvlLevels[6]
apvlLevels[7]
apvlLevels[8]

apvLevels[0]
apvlLevels[1]
apvlLevels[2]
apvlLevels[3]
apvlLevels[4]
apvLevels[5]
apvlLevels[6]
apvlLevels[7]
apvlLevels[8]
apvLevels[9]

address of 256x128 map
address of 128x64 map
address of 64x32 map
address of 32x16 map
address of 16x8 map
address of 8x4 map
address of 4x2 map
address of 2x1 map
address of 1x1 map

Example for a mipmap with a 512x512 base map

address of 512x512 map
address of 256x256 map
address of 128x128 map
address of 64x64 map
address of 32x32 map
address of 16x16 map
address of 8x8 map
address of 4x4 map
address of 2x2 map
address of 1x1 map

u32MaxMapXSizelLg2 must be set to the log 2 of the width of the largest map in the mipmap if bMipMap
is TRUE, or to the log 2 of the texture’s width if bMipMap is FALSE. u32MaxMapY SizelLg2 should
similarly be set to the log 2 of the height of the largest map in the mipmap if bMipMap is TRUE, or to
the log 2 of the texture’s height if bMipMap is FALSE.

eTexFormat should be set t€8D_ETEXFMTenumeration specifying the texel format. The RAGE
supports the following texel formats:

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
2-10 Proprietary and Confidential

Texture Mapping

C3D_ETF_ClI4 4 bpp index into palette (pseudo color)

C3D_ETF_CI8 8 bpp index into palette (pseudo color)

C3D_ETF_RGB1555 1 bit Alpha, 5 bits Red, 5 bits Green, 5 bits Blue (16 bits total)
C3D_ETF_RGB565 0 bits Alpha, 5 bits Red, 6 bits Green, 5 bits Blue (16 bits total)
C3D_ETF_RGB8888 8 bits Alpha, 8 bits Red, 8 bits Green, 8 bits Blue (32 bits total)
C3D_ETF_RGB332 0 bits Alpha, 3 bits Red, 3 bits Green, 2 bits Blue (8 bits total)
C3D_ETF_Y8 8 bits Y (8 bits total)

C3D_ETF_Yuv422 YUV 422 Packed (YUYV) (16 bits total)

C3D_ETF_RGB4444 4 bits Alpha, 4 bits Red, 4 bits Green, 4 bits Blue (16 bits total)

The YUV formats are especially suited for mapping motion video frames as textures onto polygons,
allowing an application to use live or captured video as a texture source.

clrTexChromaKey is &3D_COLORstructure specifying the texture transparency chroma key color in
the texture. If texture transparency is enabled, any texel with the chroma key color will not be rendered
onto the primitive (that is, the destination pixel at the screen location is not overwritten). Texture
transparency is disabled by default on context creation, and must be enabled by calling
ATI3DCIF_ContextSetStat&his will be described in more detail later.

htxpalTexPalette is@3D_HTXPALhandle to the texture palette associated with this texture if the texture
format is C3D_ETF_CI4 or C3D_ETF_CI8. These two texture formats and texture palettes are only
available on the 3D RAGE Il graphics accelerator. 3D RAGE Il programming issues are discussed in
the next chapter.

The following example demonstrates the complete process for registering an ordinary texture map:

Example 7: Registering an ordinary texture

/I This example demonstrates how to filla C3D_TMAP structure to register a
/] 128x128 RGB 565 ordinary texture.

C3D_TMAP Tmap;
void *IpTexture;
C3D_HTX htx;

/lload a128x128 texture into aregion of off-screen memory and setIpTexture
/ to point to this region

ZeroMemory (&TMap, sizeof (Tmap));// zero out the structure
TMap.u32Size = sizeof (TMap);

TMap.apvLevels[0] = IpTexure;// address of 128x128 texture
TMap.bMipMap = FALSE;// not a mipmap

TMap.u32MaxMapXSizelLg2 = 7;// log2 of 128

TMap.u32MaxMapYSizelLg2 = 7;// log2 of 128

TMap.eTexFormat = C3D_ETF_RGB565;// texel format is RGB 565
SET_CIF_COLOR (TMap.clrTexChromaKey, 0, 0, 0, 0); // black chroma key

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 2-11

Texture Mapping

/I register the texture
if (ATI3BDCIF_TextureReg (&TMap, &htx) = C3D_EC_OK)

// handle error

This example demonstrates how to register a mipmap texture:

Example 8: Registering a mipmap texture

/I This example demonstrates how fill a C3D_TMAP structure to register a
/] 256x128 RGB 565 mipmap.

C3D_TMAP Tmap;
void *IpTexture [cu32MAX_TMAP_LEV];
C3D_HTX htx;

/lload the mapsin a 256x128 mipmap texture into off-screen memory. Seteach
/I element of the IpTexture array to point to the address of each map, with

/I index 0 pointing to the base map, and sequential indices pointing to

/I sequentially smaller maps

ZeroMemory (&TMap, sizeof (TMap));

TMap.u32Size = sizeof (TMap);

TMap.apvLevels[0] = IpTexure [0];// address of 256x128 map
TMap.apvLevels[1] = IpTexure [1];// address of 128x64 map
TMap.apvLevels[2] = IpTexure [2];// address of 64x32 map
TMap.apvLevels[3] = IpTexure [3];// address of 32x16 map
TMap.apvLevels[4] = IpTexure [4];// address of 16x8 map
TMap.apvLevels[5] = IpTexure [5];// address of 8x4 map
TMap.apvLevels[6] = IpTexure [6];// address of 4x2 map
TMap.apvLevels[7] = IpTexure [7];// address of 2x1 map
TMap.apvLevels[8] = IpTexure [8];// address of 1x1 map
TMap.bMipMap = TRUE;// texture is a mipmap
TMap.u32MaxMapXSizelLg2 = 8;// log2 of 256
TMap.u32MaxMapYSizelLg2 = 7;// log2 of 128

TMap.eTexFormat = C3D_ETF_RGB565;// texel format is RGB 565
SET_CIF_COLOR (TMap.clrTexChromaKey, 0, 0, 0, 0);// black chroma key

/I register the texture
if (ATI3DCIF_TextureReg (&TMap, &htx) = C3D_EC_OK)

{

/!l handle error

.
Applying a Texture

Mapping a texture on primitives takes two steps: (1) select the texture, and (2) enable texture mapping
in the rendering context. Any primitives rendered witH3DCIF_RenderPrimLisbr
ATISDCIF_RenderPrimStrigvill subsequently be textured until texture mapping is disabled again in

the rendering context. By default, texture mapping is disabled when a rendering context is created.

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
2-12 Proprietary and Confidential

Texture Mapping

ATI3DCIF will scale, orient, and apply perspective correction to the texture as it is rendered based on
the texture coordinates set for the primitive vertices. These coordinates are represented by the s, t, and
wmembers of th€3D_VTCFE andC3D_VTFvertex structures. The application is responsible for setting
these coordinates correctly to map the texture in the manner intended.

A texture is selected by callirgTI3DCIF_ContextSetStateith the second argument set to
C3D_ERS_TMAP_SELECT and the third argument set to the address@3Ehed TXhandle of the

texture. This handle must have been initialized beforehand by calliBpCIF_TextureRetp register

the texture with ATI3DCIF. Texture mapping is enabled by calhBDCIF_ContextSetStaveth the

second argument setto C3D_ERS_TMAP_EN and the third argument pointing to a BOOL data type set
to TRUE. The following example illustrates this:

Example 9: applying a texture to a primitive

BOOL bTexEnable = FALSE;
C3D_HTX htx1, htx2;
C3D_HRC hRC;

/I create a rendering context (handle hRC), and load and register two
/I textures, initializing htx1 and htx2

/I switch to 3D mode
ATI3DCIF_RenderBegin (hRC);

/I enable texture mapping
bTexEnable = TRUE;
ATI3DCIF_ContextSetState (hRC, C3D_ERS_TMAP_EN, &bTexEnable);

/Il select the first texture
ATI3DCIF_ContextSetState (hRC, C3D_ERS_TMAP_SELECT, &htx1);

/I render 3D primitives, mapping the first texture on each primitive
ATI3DCIF_RenderPrimList (PrimListl, PrimListLNumVerts);

/I select the second texture
ATI3DCIF_ContextSetState (hRC, C3D_ERS_TMAP_SELECT, &htx2);

/I render 3D primitives, mapping the second texture on each primitive
ATI3DCIF_RenderPrimList (PrimList2, PrimList2NumVerts);

/I disable texture mapping
bTexEnable = FALSE;
ATI3DCIF_ContextSetState (hRC, C3D_ERS_TMAP_EN, &bTexEnable);

/l render 3D primitives without texture mapping
ATI3DCIF_RenderPrimStrip (PrimStripl, PrimStripINumVerts);

/I now switch back to 2D mode
ATI3DCIF_RenderEnd ();

Notice that allATI3DCIF_ContextSetStatalls were made betwe&TI13DCIF_RenderBegiand
ATI3DCIF_RenderEndAgain,ATI3DCIF_ContextSetStatell not incur overhead to save and restore
the state of the 2D engine when called within a 3D rendering block.

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 2-13

Texture Mapping

Unregistering a Texture

Before the application terminates, it must unregister all registered textures by calling
ATI3DCIF_TextureUnregvith the handle of the texture to be unregistered.

The following example illustrates how to unregister a texture:

Example 10: unregistering a texture
C3D_HTX htx;
/l'load, register and use a texture

/I unregister the texture
if (ATI3DCIF_TextureUnreg (htx) != C3D_EC_OK)

// handle error

.
Setting Texture Filtering, Lighting, and Perspective Correction Levels

Allrendering states in the rendering context related to texture mapping, such as texture filtering, lighting,
and perspective correction level, may be modified by caliR@DCIF_ContextSetState

To modify the texture filtering, caRTI3DCIF_ContextSetStateith the second argument set to
C3D_ERS_TMAP_FILTER and the third argument pointing @3® ETEXFILTERenumeration
specifying the new filtering mode. ATI3DCIF allows different filtering to be performed on texture
minification and magnification. For mipmapping, it supports filtering modes which filter within maps
and blend the results of two maps.

The following table shows th@3D_ETEXFILTERenumeration constants:

C3D_ETFILT_MINPNT_MAGPNT pick-nearest filtering on both minification and
magnification

C3D_ETFILT_MINPNT_MAG2BY2 pick-nearest filtering on minification, bi-linear filtering
on magnification
C3D_ETFILT_MIN2BY2_MAG2BY?2 bi-linear filtering on both minification and magnification

C3D_ETFILT_MIPLIN_MAGPNT 1x1 blend between maps on minification (only applies to
mipmaps), pick-nearest filtering on magnification

C3D_ETFILT_MIPLIN_MAG2BY2 1x1 blend between maps on minification (only applies to
mipmaps), bi-linear filtering on magnification

C3D_ETFILT_MIPTRI_MAG2BY2 2x2 blend between maps, bi-linear filtering within each
map on minification (only applies to mipmaps), bi-linear
filtering on magnification

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.

2-14

Proprietary and Confidential

Texture Mapping

To modify the texture lighting, callTI3DCIF_ContextSetStateith the second argument set to
C3D_ERS_TMAP_LIGHT and the third argument pointing ©3D_ETLIGHTenumeration
specifying the new lighting mode. The following table showsdBE_ETLIGHTenumeration

constants:
C3D_ETL_NONE the texture is not lighted: the texel color is applied directly.
C3D_ETL _MODULATE the texture is lighted: the texel color is multiplied by the color

of the primitive on which the texture is being mapped. The
primitive color is determined by rendering context’s current
shading mode (gouraud, flat, etc.)

C3D_ETL_ALPHA _DECAL the texture is lighted: the texel color is determined by the
following equation:
output texel = (texel color x texel alpha) + (primitive color x
(1 - texel alpha)), where the texel alpha varies between 0 and 1

The perspective correction level is set by caliWig3DCIF_ContextSetStawth the second argument

setto C3D_ERS_TMAP_PERSP_COR, and the third argument pointing to a C3D_ETPERSPCOR
enumeration specifying the new perspective correction level. ATI3DCIF provides seven perspective
correction levels, from C3D_ETPC_NONE, which provides no correction, to C3D_ETPC_NINE, which
provides full correction. The frame rate decreases with increased levels of perspective correction. No
correction offers the best frame rate, while full correction offers the worst. The default level set on context
creation is C3D_ETCP_THREE, which offers a good compromise between frame rate and the level of
perspective correction.

Transparent Texture Mapping

ATI3DCIF provides two ways for a client application to perform texture transparency. The first method

is to use a chroma key color in the texel's RGB data. The second method is to use a bit mask in the texel’s
alpha data (needless to say, this method only works for texel formats which have an alpha channel, such
as RGB 4444, RGB 1555, and RGB 8888). Both methods are termed as texel operations, and either may
be selected by callingTI3DCIF_ContextSetStateith the second argument set to
C3D_ERS_TMAP_TEXOP, and the third argument pointing@3ga_ETEXORenumeration

specifying the operation.

To select chroma key texture transpare@3D_ETEXOPRshould be set to
C3D_ETEXOP_CHROMAKEY. The chroma key used will be the color set in the clrTexChromaKey
member of th&€3D_TMAPstructure used to register the texture. Any texel matching this chroma key
color will not be rendered on the primitive.

To use the alpha channel for transpare@8p ETEXORshould be set to
C3D_ETEXOP_ALPHA_MASK. The data in the alpha channel is used as a bit field to decide which
texel is rendered and which is transparent. If the least significant bit in the channel is set to 0, the texel
is not drawn. If set to 1, the texel is drawn.

If C3D_ETEXOP is set to C3D_ETEXOP_ALPHA, the texture’s alpha value is passed on to the alpha
blender if alpha blending is enabled. Alpha blending is described later in this chapter.

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 2-15

Alpha Blending

Texture Coordinates

ATI3DCIF accepts homogeneous texture coordinates (s, t, and inverse w). Here is a simple illustration
of how to calculate homogeneous texture coordinates from true texture coordinates (u, v):

Let (X, Y, Z) represent a point in camera coordinates (camera coordinates are defined as 3D world
coordinates with the camera, or eye, located at the origin). Camera coordinates (X, Y, Z) are projected
to screen coordinates (x, vy, z) according to the following equations:

X = k x X/w,
y =k x Yiw,
z = ((k1 x Z2) + k2)/w

Where k, k1, and k2 are constants and w is proportional to Z. w should be positive. If the view direction
is along the —Z axis and the view plane is at Z = -1, then w = —Z. The homogeneous texture coordinates
to be sent to ATI3DCIF should be:

s = u/w
t=viw

inverse w = 1/w

Alpha Blending

The RAGE's alpha blender may be used to combine source and destination pixels in accordance to source
and destination blending factors which are functions of vertex alpha or RGB values. The equation used
to determine the output destination pixel is the following:

output destination color = (source color x source blending factor) + (current destination color x
destination blending factor)

ATI3DCIF allows the source and destination blending factors to be set by calling
ATI3DCIF_ContextSetStat8ource blending factors are represented b 8i2 EASR@&numeration
type. Destination blending factors are represented b 3fte EADSTenumeration type. To set the
source factor, calTI3DCIF_ContextSetStateith the second argument set to
C3D_ERS_ALPHA_SRC and the third set to the addres€8a EASR@&numeration specifying the
blending factor. To set the destination blending factor AJABDCIF_ContextSetStaveth the second
argument setto C3D_ERS_ALPHA_DST and the third set to the addreS3Df EADSTenumeration.

The following table lists th€3D_EASRGource blending factor enumeration constants:

C3D_EASRC_ZERO blend factor is (0, 0, 0)
C3D_EASRC_ONE blend factor is (1, 1, 1)
C3D_EASRC_DSTCLR blend factor is (Rd, Gd, Bd)
C3D_EASRC_INVDSTCLR blend factor is (1-Rd, 1-Gd, 1-Bd)
C3D_EASRC_SRCALPHA blend factor is (As, As, As)

C3D_EASRC_INVSRCALPHA blend factor is (1-As, 1-As, 1-As)

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
2-16 Proprietary and Confidential

Applying Fog

The following table lists th€3D_EADSTdestination blending factor enumeration constants:

C3D_EADST_ZERO blend factor is (0, 0, 0)
C3D_EADST_ONE blend factor is (1, 1, 1)
C3D_EADST_SRCCLR blend factor is (Rs, Gs, Bs)
C3D_EADST_INVSRCCLR blend factor is (1-Rs, 1-Gs, 1-Bs)
C3D_EADST_SRCALPHA blend factor is (As, As, As)

C3D_EADST_INVSRCALPHA blend factor is (1-As, 1-As, 1-As)

CAUTION: Enabling alpha blending adds another process to the graphics pipeline, causing rendering
performance to decrease. For the trivial case of source blending factor = C3D_EASRC_ONE and
destination blending factor = C3D_EADST_ZERO, the alpha blender is disabled and removed from
the graphics pipeline. If the application does not intend to use alpha blending, it should disable this
operation by forcing the source and destination blending factors to these states (which are set by
default during context creation). It is NOT recommended that the application disable alpha blending

by setting vertex alphas to trivial values, but leave the source and destination blending factors at states
other than C3D_EASRC_ONE and C3D_EADST_ZERO. Otherwise, the alpha blender will be
enabled and chained into the pixel data path in the graphics pipeline.

Please note that it is better to use ATI3DCIF’s fog support rather than alpha blending to implement fog,
as the fog support is much faster for this effect.

Applying Fog

Fog is applied through a two step process. The first step is to set a fog color, and the next step is to enable
fogging. Once enabled, the fog blending factor for each vertex is determined from its alpha value. This
does not cause a conflict between fogging and alpha blending because the two operations are mutually
exclusive. The manner in which the fog color is applied to the primitive depends on the current shading
mode. For example, to interpolate the fog across the primitive, the shading mode should be set to smooth.

To set the fog color, calTI3BDCIF_ContextSetStatith the second argument set to
C3D_ERS_FG_CLR and the third argument pointing@3B_COLORstructure specifying the fog
color. Fogging is enabled by callidg I3DCIF_ContextSetStateith the second argument set to
C3D_ERS_FOG_EN and the third argument pointing to a BOOL set to TRUE.

ATI3DCIF Viewport

ATI3DCIF renders primitives relative to a rectangular region called the viewport. Its top left corner
defines the origin of the screen coordinate system in which primitives are drawn, and its width and height
extents define the non-clipped rendering area. Parts of primitives which lie outside of this area are clipped
by hardware during rendering.

The viewport can be moved to change the logical origin of the screen coordinate system. For example,
setting its top, left corner to (10, 10) will cause a vertex with x, y coordinates (0, 0) to be rendered at screen
location (10, 10). The viewport's width and height extents are always defined relative to its top left corner.

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 2-17

ATI3DCIF Clipping Scissors

The viewport can be changed by callngI3DCIF_ContextSetStat&he new origin and extents are
specified by the€3D_RECTstructure, which has the following syntax:

typedef struct {
C3D_INT32 top;// top, left corner top coordinate
C3D_INT32 left;// top, left corner left coordinate
C3D_INT32 bottom;// height extent
C3D_INT32 right;// width extent

} C3D_RECT, * C3D_PRECT;

The second argument AT I3DCIF_ContextSetStashould be set to C3D_ERS_SURF_VPORT. The
third argument should contain the address©@8B_RECTstructure specifying the new viewport origin
and extents.

CAUTION: Pixels are clipped at the edges of the viewport during the last stage of the rendering
process. Prior to reaching this stage, these pixels are still processed through the graphics pipeline
although they are not rendered. If vertex coordinates extend beyond the viewport boundaries by a
large amount, the graphics engine will end up processing a large number of pixels which will never
be rendered. This may have a detrimental effect on performance. For this reason, it may be
necessary to pre-clip primitives in software if the clipping overhead proves to be less costly than the
time spent processing unrendered pixels.

ATI3DCIF Clipping Scissors

The ATI3DCIF clipping scissors define a rectangular region outside of which primitives are clipped.
The behavior and performance constraints are the same as for the viewport described in the last section,
except the origin is always fixed at the top left corner of the drawing surface. The scissors are set by
calling ATI3DCIF_ContextSetStateith the second argument set to C3D_ERS_SURF_SCISSOR and

the third set to the address o£38D_RECTstructure defining the rectangular clipping region. On

rendering context creation, the scissors are set to the rectangular region of the desktop.

NOTE: The scissors are not available on some earlier versions of ATI3DCIF. Applications should call
ATI3DCIF_Getinfoand query the u32CIFCaps1 member ofdaB®_3DCIFINFOstructure to verify
the availability of the scissors.

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.

2-18

Proprietary and Confidential

Introduction

This chapter covers programming topics which only apply to the ATI 3D RAGE Il graphics accelerator.
The 3D RAGE Il is the next generation of 3D accelerators in ATI's RAGE family of graphics processors.
It offers the same core functionality as the 3D RAGE and adds the following new features:

» CI8 palettized textures
» Cl4 palettized textures
» Z buffering

The 3D RAGE Il doubles 3D performance and improves 2D performance by 20% over the 3D RAGE.
The new features in the 3D RAGE Il are supported by extensions to ATI3DCIF added in version
4.02.0230 of the interface.

Determining ATI3DCIF Capabilities

Because of the feature differences between the 3D RAGE and 3D RAGE II, an application should query
ATI3DCIF capabilities to determine if a desired feature is available. In version 4.02.0217 of ATI3DCIF,
the u32CIFCaps member was added to the C3D_CIFINFO structure to enable querying. This field reports
the capabilities available with the combination of the ATISBDCIF version in use and the RAGE accelerator
in the graphics subsystem. The functionality provided by ATI3DCIF prior to version 4.02.0217 is
considered the base-line functionality, and is represented by the flag C3D_CAPS_BASE. Features added
to ATI3DCIF invision 4.02.0217 and later are represented by capabilities flags which are bit-wise OR-ed
together. For example, if fog and Z buffering are supported, u32CIFCaps will contain C3D_CAPS_FOG
OR-ed with C3D_CAPS_Z_BUFFER.

In version 4.03.0039 of ATISDCIF, four more capabilities fields were add€@in 3DCIFINFQ
u32CIFCaps was renamed u32CIFCaps1. The new fields are labeled u32CIFCaps2 to u32CIFCaps5. In
version 4.03.2511 of ATI3DCIF, the u32CIFCaps2 member was defined to support additional
capabilities under RAGE Pro. u32CIFCaps3 to u32CIFCaps5 are currently unused and are reserved for
future use. The flags have also been modified to indicate which field they correspond to. For instance,
C3D_CAPS_BASE has been changed to C3D_CAPS1_BASE.

NOTE: Because both the 3D RAGE and 3D RAGE Il will have a large installed base, it is
recommended that applications be designed to handle the feature set differences between the two
accelerators rather than support only one. The ATI3DCIF capabilities fields may be used to query
feature differences.

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 3-1

Palettized Textures

Palettized Textures

In addition to the texture formats supported by the 3D RAGE, the 3D RAGE Il supports CI8 and Cl4
palettized textures. In the CI8 format, each texel is an 8-bit packed value which represents an index into
a 256 color palette. In the Cl4 format, each texel is a 4-bit packed index into a 16 color palette. The four
bit texel values must be byte aligned and may be packed in either the low or high nibble. It is possible
to compress two Cl4 textures into the space of one CI8 texture by loading one into the low nibble and
the other into the high nibble of each byte.

As with the non-palettized textures supported by the 3D RAGE, the CI8 and CI4 textures must also be
loaded into video memory. Their width and height must similarly be powers of two and cannot exceed
1024x1024.

The procedure for texture mapping CI8 and Cl4 textures under ATISDCIF is essentially the same as that
for mapping non-palettized textures. Texture mapping with ATI3DCIF is covered in full detail in the
sectionTexture Mappingn the previous chapter. The only difference is that a logical palette representing
the texture’s palette must be created in ATI3DCIF and attached to the texture before it is registered. Also,
the palette must be destroyed after the texture is unregistered and prior to terminating ATI3DCIF.

A logical palette is created by callidg I3DCIF_TexturePaletteCreat@he first argument is a
C3D_ECI_TMAP_TYPE enum constant specifying the kind of palette to create. The
C3D_ECI_TMAP_TYPE enum has the following syntax:

typedef enum {
C3D_ECI_TMAP_TRUE_COLOR =0, /I no palette
C3D_ECI_TMAP_4BIT_HI =1, /I 16 entry palette
C3D_ECI_TMAP_4BIT_LOW =2, /I 16 entry palette
C3D_ECI_TMAP_8BIT =3, /I 256 entry palette
C3D_ECI_TMAP_NUM =4, /I invalid enumeration
C3D_ECI_TMAP_FORCE_U32 =C3D_FORCE_SIZE

} C3D_ECI_TMAP_TYPE;

The second argument is an arraZ8D_PALETTENTRStructures specifying the color of each element
in the palette. Th€3D_PALETTENTRY¥truct has the following syntax:

typedef union {
struct {
unsignedr: 8; // 8 red bits
unsigned g: 8; // 8 green bits
unsigned b: 8; // 8 blue bits
unsigned flags: 8; // flag bits - see above defines
h
C3D_UINT32 u32All;
} C3D_PALETTENTRY , * C3D_PPALETTENTRY;

For a CI8 texture, a 256 elem&@8D_PALETTENTRHKnust be specified. For a Cl4 texture, the array must
contain 16 elements. The r, g, and b membe@3a&f PALETTENTR¥pecify the red, green, and blue
components, respectively, of each palette entry. The flags member may be used to inhibit individual entries
in the palette from loading. If it is set to C3D_LOAD_PALETTE_ENTRY, the physical palette entry at the
corresponding index will be replaced with the specified color. If flags is set to
C3D_NO_LOAD_PALETTE_ENTRY, the palette entry at the corresponding index will not be altered.

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
3-2 Proprietary and Confidential

Palettized Textures

The last argument is a pointer t€8D_HTXPALpalette handle. If the palette is created successfully,
the handle will be set to a valid non-zero value. Otherwise, it will be set to NULL.

Once created, the palette must be attached to its associated texture. This is done by assigning its handle
to the htxpalTexPalette member of 8D _TMAPstructure used to register the texture. To identify the
texture format as a CI8, the eTexFormat member must be set to C3D_ETF_CI8. To identify the texture
format as a Cl4, eTexFormat must be set to C3D_ETF_Cl4.

After the application has finished using the texture and has unregistered it, its palette should be destroyed.
This is done by callingTISDCIF_TexturePaletteDestrayith the handle of the palette as the argument.

NOTE: If palettized textures contain their own unique palettes (i.e. each has a palette identified by a different
handle), the physical palette is changed each time a different texture is selected. If textures are changed
frequently, the fast rate of physical palette updates may cause visual artifacts on the screen. For best results,
applications should use one palette for CI8 textures and 16 palettes for Cl4 textures at most.

The following examples demonstrate several operations related to palettized textures:

Example 1: creating a palette

/I This example demonstrates howto create a palette in ATI3DCIF. ltassumesthe
/ltexture beingloadedisa 256 color Windows bitmap with a 256 elementRGBQUAD
/Il array representing the palette.

RGBQUAD rgbPalette [256];
C3D_PALETTENTRY peTexturePalette [256];
C3D_HTXPAL hTXPal;

intI;

/l read bitmap palette RGB values from bitmap file into rgbPalette array

/I fill peTexturePalette array. Set flag to load all entries

for (inti=0; i< 256; i++)

{
peTexturePalette [i].r = rgbPalette [i].rgbRed ;
peTexturePalette [i].g = rgbPalette [i].rgbGreen ;
peTexturePalette [i].b = rgbPalette [i].rgbBlue ;
peTexturePalette [i].flags = C3D_LOAD_PALETTE_ENTRY;

}

/I create texture palette and get handle
if (ATISDCIF_TexturePaletteCreate (C3D_ECI_TMAP_8BIT, peTexturePalette,
&hTXPal) I=C3D_EC_OK)

{

/I handle error

\

Example 2: registering a palettized texture

/I In this example, a CI8 128x128 texture is registered.

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 3-3

Palettized Textures

C3D_HTXPAL hTXPal;
C3D_HTX hTX;
pTexAddress;

/' load the texture into video memory. Let pTexAddress point
/I to this location

/I create a palette for the texture by calling ATI3DCIF_TexturePaletteCreate,
/I initializing handle hTXPal

/I filla C3D_TMAP struct

ZeroMemory (&TMap, sizeof (TMap));

TMap.u32Size = sizeof (TMap);

TMap.apvLevels[0] = pTexAddress;

TMap.bMipMap = FALSE;

TMap.u32MaxMapXSizelLg2 = 7,
TMap.u32MaxMapYSizelLg2 = 7,

TMap.eTexFormat = C3D_ETF_CIS8;
SET_CIF_COLOR (TMap.clrTexChromaKey, 0, 0, 0, 0);
TMap.htxpalTexPalette = hTXPal;

/I register the texture
ecRetVal = ATI3DCIF_TextureReg (&TMap, &hTX);
if (ecRetVal I= C3D_EC_OK)

{
Il destroy palette
ATI3DCIF_TexturePaletteDestroy (hTXPal);
/I other error handling

}

Example 3: destroying a palette

/I unregister the texture
ecRetVal = ATI3DCIF_TextureUnreg (hTX);
if (ecRetVal I=C3D_EC_OK)

{

// handle error

}

ecval = ATI3DCIF_TexturePaletteDestroy (hTXPal);
if (ecval 1= C3D_EC_OK)

{
// handle error
}
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.

3-4 Proprietary and Confidential

Z Buffers

Z Buffers

The 3D RAGE Il supports Z buffers for sorting primitives by their z values while rendering. Z buffers
must be allocated in video memory and must be aligned on eight byte boundaries. An application can
ensure Z buffers are aligned properly by using DirectDraw surfaces for the buffers, as DirectDraw
surfaces are aligned on eight byte boundaries. Z buffers on the 3D RAGE Il are 16 bits deep. This gives
a resolution of 2 for z values. Applications should ensure that the range of z values used can be scaled
within this resolution (for example 0 1% 1) to avoid inaccuracies due to truncation error.

Under ATI3DCIF, the Z buffer is always associated with the drawing surface. For example, in a double
buffer configuration where ATI3DCIF is only rendering to the back surface, the Z buffer will always be
associated with the back surface. Therefore, the Z buffer must have the same pitch in pixels and height
in scan lines as the drawing surface.

To designate a memory region as a Z buffer, its starting address and pitch in pixels must be specified to
ATI3DCIF. The starting address may be set by calim¢8DCIF_ContextSetStateith
C3D_ERS_SURF_Z PTR as the second argument and the address of a pointer containing the buffer’s
starting address as the third argument. To set the pitldBDCIF_ContextSetStatsust be called with

the second argument set to C3D_ERS_SURF_Z PITCH and the third set to the address of a
C3D_UINT32 variable holding the pitch in pixels.

ATI3DCIF provides a variety of compare functions for testing z values. These functions are logical
operations which determine whether a pixel is selected or rejected based on the way its z value compares
with the buffered z value at that location. ATISBDCIF Z compare functions are represented by the
C3D_EZCMPenumeration. The following table lists t68D_EZCMPconstants:

C3D_EZCMP_NEVER Z compare never passes

C3D_EZCMP_LESS Z compare passes if test z is less than buffered z
C3D_EZCMP_LEQUAL Z compare passes if test z is less than or equal to buffered z
C3D_EZCMP_EQUAL Z compare passes if test z is equal to buffered z

C3D_EZCMP_GEQUAL Z compare passes if test z is greater than or equal to buffered z
C3D_EZCMP_GREATER Z compare passes if test z is greater than buffered z
C3D_EZCMP_NOTEQUAL Z compare passes if test z is not equal to buffered z
C3D_EZCMP_ALWAYS Z compare always passes

The Z compare function may be set by callkXig3DCIF_ContextSetStateith the second argument
settoC3D_ERS Z CMP_FN@nd the third set to the address &f3D _EZCMPenum specifying the
compare function.

Z buffering may be enabled and disabled through the C3D_EZMODE enumeration. When Z buffering
is enabled, it can be set to either update the contents of the Z buffer after performing Z compare tests,
or simply do the compare tests without modifying the Z buffer. The C3D_EZMODE constants are listed
in the following table:

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 3-5

Z Buffers

C3D_EZMODE_OFF Disable Z testing
C3D_EZMODE_TESTON Test Z, do not update the Z buffer
C3D_EZMODE_TESTON_WRITEZTest Z, update the Z buffer

The Z test mode may be set by call&pl3DCIF_ContextSetStateith the second argument set to
C3D_ERS_Z MODE and the third set to the address of a C3D_EZMODE enum specifying the test
mode. Applications should ensure that the Z buffer is initialized properly at the start of each frame update
based on the manner in which frames are updated. For instance, some or all parts of the of Z buffer may
have to be reset to zeros or ones (or whatever value is appropriate for the specific application) based on
the compare function used.

The following example shows how to set up a Z buffer with ATI3DCIF:

Example 4: setting up a Z buffer

/I This example demonstrates how to set up a Z buffer with the Z testing
/I mode set to update the buffer after each test and the Z compare function
/I set to greater than.

C3D_HRC hrg;
C3D_EZCMP eZCompFnc;
C3D_EZMODE eZMode;
void *IpSurface;
C3D_UINT32 ui32Pitch;

/I create rendering context (handle in hrc), allocate Z buffer in video
/l memory (address in IpSurface), and get pitch (value in pixels in

/I ui32Pitch. Must match pitch of drawing surface associated with Z
/I buffer)

/I set address of Z buffer
if (ATIBDCIF_ContextSetState (hrc, C3D_ERS_SURF _Z PTR, (C3D_PRSDATA)
&lpSurface) 1= C3D_EC_OK)

{

/I handle error
}
/I set pitch

if (ATI3DCIF_ContextSetState (hrc, C3D_ERS_SURF_Z_PITCH, (C3D_PRSDATA)
&ui32Pitch) 1= C3D_EC_OK)
{

/I handle error

}

I set Z buffering mode

eZMode = C3D_EZMODE_TESTON_WRITEZ;

if (ATI3DCIF_ContextSetState, hrc, C3D_ERS_Z_MODE, (C3D_PRSDATA)
&eZMode) '= C3D_EC_OK)

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
3-6 Proprietary and Confidential

Z Buffers

// handle error

}

/I set Z buffer compare function

ezCompFnc = C3D_EZCMP_GREATER;

if (ATI3DCIF_ContextSetState (hrc, C3D_ERS_Z CMP_FNC, (C3D_PRSDATA)
&zCompFnc) = C3D_EC_OK)

{
/I handle error
}
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30

Proprietary and Confidential 3-7

Z Buffers

This page intentionally left blank.

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
3-8 Proprietary and Confidential

Introduction

The following features have been added to ATI3DCIF to support the RAGE PRO:

» Determining capabilities

» Texture compositing

» Texture clamping

» LOD biasing

e Specular lighting

» Destination Alpha testing

» Vector Quantization (VQ) compression
e TL Vertex type (C3D_TLVERTEX)

Determining Capabilities
In version 4.03.2511 of ATI3DCIF, the82CIFCaps2member was added to the C3D_CIFINFO
structure to support additional capabilities under RAGE PRO, adding to the capabilites specified in

Getting ATI3DCIF Module and Graphics Subsystem Informatiad@hapter 2.

The following table lists u32CIFCaps? flags:

C3D_CAPS2_TEXTURE_COMPOSITE second texture and composite blend factor support
C3D_CAPS2_TEXTURE_CLAMP clamp texture coordinates to 1.0 enable/disable
C3D_CAPS2_DESTINATION_ALPHA_ BLENLCextended alpha blending modes supported
C3D_CAPS2 TEXURE_TILING texture tiling support

Texture Compositing

Texture compositing is the process of combining two textures into one composite texture. This process
may be used to apply a light map to a texture or to dissolve from one texture into another. Texture
compositing allows an application to get more mileage out of its textures by combining and modifying
them in unlimited ways. For example, a single light map may be applied to several textures, eliminating
the need to create unique, modified versions of the same textures.

Texture compositing is possible only when texture mapping is enabled. To composite two textures, a

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 4-1

Texture Compositing

primary texture must be selected and texture mapping must be enabled by calling
ATI3DCIF_ContextSetStateith the state flag C3D_ERS_TMAP_EN and the state data pointing to a
BOOL variable setto TRUE. The primary texture is selected by calling ATISBDCIF_ContextSetState
with the state flag C3D_ERS TMAP_SELECT and the state data pointing to the teR&De'sI TX
handle. The handle must be obtained beforehand by loading and registering the texture using
ATI3DCIF_TextureRegs described in Chapter&xture MappingOnce texture mapping is enabled,
texture compositing may be turned on by calling ATI3DCIF_ContextSetState with the state flag
C3D_ERS_COMPOSITE_EN and the state data pointing to a BOOL variable set to TRUE. The
composite texture must be loaded and registered in the same manner as the primary texture. It is selected
into the rendering context by calling ATISBDCIF_ContextSetState with the state flag
C3D_ERS_COMPOSITE_SELECT and the state data pointing to its C3D_HTX handle. Applications
must ensure that the primary texture is selected when compositing, otherwise behavior is undefined.

The two texture maps may have different dimensions. They may also have different texel formats, but
with two restrictions:

1. if one texture is in a YUV format, then the other texture must be in a YUV format, and

2. if one texture is in an eight-bit format (CI8, Cl4, RGB332, or Y8), then the other texture
must be in an eight-bit format, although it may be in a different eight-bit format.

The secondary composite texture’s filtering mode must be set separately than the primary’s. Its filtering
mode is set by callingTI3DCIF_ContextSetStatath the state flag C3D_ERS_COMPOSITE_FILTER

and the state data pointing t€8D_ETEXFILTERenum specifying the filtering mode. Only four of

the six C3D_ETEXFILTER modes apply to the secondary texture. These are
C3D_ETFILT_MINPNT_MAGPNT, C3D_ETFILT_MINPNT_MAG2BY2,
C3D_ETFILT_MIN2BY2_MAGPNT, and C3D_ETFILT_MIN2BY2_MAG2BY2. For more on texture
filtering modes, see the sub-sect®eatting Texture Filtering, Lighting, and Perspective Correction
Levelsin the sectiolexture Mappingn Chapter 2.

There are three possible texture composting functions in ATI3DCIF: blend, modulation, and
specular-addition. These states are represented IB8theETEXCOMPFCMNNnum, which has the
following syntax:

typedef enum {
C3D_ETEXCOMPFCN_BLEND =0, // use blend factor set in
// C3D_ERS_COMPOSITE_FACTOR
C3D_ETEXCOMPFCN_MOD =1, // modulate the two textures
C3D_ETEXCOMPFCN_ADD_SPEC =2,
C3D_ETEXCOMPFCN_MAX =3,

C3D_ETEXCOMPFCN_FORCE_U32 = C3D_FORCE_SIZE
} C3D_ETEXCOMPFCN, * C3D_PETEXCOMPFCN;

The following is a description of the composite functions:

Blend

This is the default texture composite function. The two textures are combined by a blending factor
according to the following equation:

final texel = (primary texel x (1 - (blending factor/16))) + (secondary texel x blending factor/16)

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
4-2 Proprietary and Confidential

Texture Clamping

The blending factor may be any integer value between 0 and 15, giving 16 blending levels. It is set by
calling ATI3DCIF_ContextSetStatdth the state flag C3D_ERS_COMPOSITE_FACTOR and the state
data set to the blend factor. The default blending factor on context creation is 8. By progressively increasing
or decreasing the blending factor, the two texture maps may be gradually dissolved into one another.

An alternative to setting the blending factor explicitly throug&t8DCIF_ContextSetStatall is to

extract the blending factor from the alpha channel of the composite texture. This state can be enabled
by calling ATI3DCIF_ContextSetState with the state flag

C3D_ERS_COMPOSITE_FACTOR_ALPHA and the state data pointing to a BOOL variable set to
TRUE. This state can also be set as the default for the composite texture by setting the bAlphaBlend
member of th&€3D_TMAPstructure to TRUE when registering the texture. Once set, the state can be
toggled on or off by calling ATI3DCIF_ContextSetState with the
C3D_ERS_COMPOSITE_FACTOR_ALPHA flag.

Modulation
The two textures are combined according to the following equation:

final texel = primary texel x secondary texel

The two textures are simply multiplied together for the final texel. There is no blending factor affecting
the modulation.

Specular-Addition
The two textures are combined according to the following equation:

final texel = (primary texel x diffuse color) + secondary texel

Texture Clamping

Texture clamping allows a texture’s s and t coordinates to be clamped at 1.0, which causes the texel at
coordinate 1.0 to be replicated towards the edge of the primitive. The effect is that of smearing, which
can be used to extend the edges of the texture to fill in the gaps when tiling is not desired.

To clamp the s coordinate, the bClampS member o£8i2 TMAPSstructure must be set to TRUE
before the texture is registered. Similarly, to clamp the t coordinate, the bClmapT member must be set
to TRUE.

LOD Biasing

LOD (Level of Detail) biasing controls level switching during mipmapping. The LOD bias is an integer
value between 0 and 15 which modifies the threshold stride at which the switch is made to the next
smallest map. The threshold stride is determined according to the following equation:

threshold stride = 1 + (LOD bias/16)

This equation bounds the threshold stride between 1 and 1 15/16.

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 4-3

Specular Lighting

The LOD bias is set by callingTI3DCIF_ContextSetStatith the state flag
C3D_ERS_LOD_BIAS_LEVEL and the state data set to the LOD bias value. By default, the LOD bias
is 0, setting the threshold stride to 1.

Specular Lighting

Specular lighting is the process of applying an additive highlight to a primitive. This is done by specifying
a specular color in the vertex description. Specular lighting must be enabled before it can be applied. It
can be enabled by callidgr I3DCIF_ContextSetStateith the state flag C3D_ERS_SPECULAR_EN

and the state data pointing to a BOOL variable set to TRUE. The desired color is set spedhiar.
member of the€3D_TLVERTE$tructure. Specular color may be referenced in this structure as either

a C3D_UINT32 or as individual C3D_UINT8 color components: b, g, r and a.

Destination Alpha Testing

Destination alpha testing is a mechanism for selectively writing source data to the destination buffer.
This process compares the alpha value from one of six selectable sources to a reference value maintained
in the rendering context. If the comparison passes, the RGB data of the primitive being rendered is
written to the destination RGB channels, and the alpha from the selected source is written to the
destination alpha channel. Otherwise, the destination remains unchanged. Conceptually, the process is
similar to z-buffering in that a decision is made to render a pixel based on the comparison of two values.
But unlike z-buffering, the alpha comparison reference is not the target destination pixel's alpha value,
but a single reference value in the rendering context which is compared against for all pixels. Also, as
mentioned, there are six sources of alpha test values, as opposed to one source of z data (the vertex z
value).

The depth of the alpha channel varies depending on the pixel format. The alpha channel may be as narrow
as one bit, as in the ARGB1555 format, or as wide as eight bits, as in the ARGB8888 format.

The alpha write source is selected by calling ATI3DCIF_ContextSetState with the state flag
C3D_ERS_ALPHA DST_WRITE_SELECT and the state data pointingC®a EASELenum
specifying the source.

The six alpha write sources represented by the C3D_EASEL enum has the following syntax:

typedef enum {
C3D_EASEL_ZERO =0, // write all bits 0
C3D_EASEL_ONE =1, // write all bits 1

C3D_EASEL_SRCALPHA =4, // write As

C3D_EASEL_INVSRCALPHA =5, // write 1-As

C3D_EASEL_DSTALPHA =6, // write Ad

C3D_EASEL_INVDSTALPHA =7, // write 1-Ad

C3D_EASEL_FORCE_U32 =C3D_FORCE_SIZE
} C3D_EASEL, *C3D_PEASEL;

Asrepresents the source primitive alpha channel Aah@presents the destination alpha channel. A

note on using C3D_EASEL_DSTALPHA and C3D_EASEL_INVDSTALPHA — the alpha data in the
destination alpha channel may be different for each buffer when double buffering, which is in contrast
to z-buffering, where both buffers usually share a single z-buffer and therefore reference the same z

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
4-4 Proprietary and Confidential

Vector Quantization (VQ) Compression

values.

If C3D_EASEL_SRCALPHA or C3D_EASEL_INVSRCALPHA is selected, the alpha write data is
read from the source primitive. If the primitive data is a texel which does not have an alpha channel, an
alpha value of Oxff is used for comparison and alpha writing.

The alpha value from the selected write source is compared to a reference value maintained in the
rendering context. This reference value may be set by calling ATI3DCIF_ContextSetState with the state
flag C3D_ERS_ALPHA_DST_REFERENCE and the state data pointing to a C3D_UINT32 variable
indicating the desired reference value. The reference value default is 0.

The alpha compare functions are represented iy3be EACMPenum, which has the following syntax:

typedef enum {
C3D_EACMP_NEVER =0,
C3D_EACMP_LESS =1,
C3D_EACMP_LEQUAL =
C3D_EACMP_EQUAL =3,
C3D_EACMP_GEQUAL =4,
C3D_EACMP_GREATER =5,
C3D_EACMP_NOTEQUAL =6,
C3D_EACMP_ALWAYS =7,
C3D_EACMP_MAX =38,
C3D_EACMP_FORCE_U32 = C3D_FORCE_SIZE

} C3D_EACMP, * C3D_PEACMP;

21

These functions are similar to the z compare functions described in Chapter 3. The alpha compare function
is set by callintATI3DCIF_ContextSetStatwith the state flag C3D_ERS_ALPHA DST _TEST _FNC

and the state data pointing t€aD_EACMPenum specifying the function. The default compare function

is C3D_EACMP_ALWAYS. To enable or disable destination alpha testing, ATI3DCIF_ContextSetState
should be called with the state flag C3D_ERS_ALPHA_DST_TEST_ENABLE and the state data pointing
to a BOOL variable indicating the enable state.

Vector Quantization (VQ) Compression

VQ textures are very similar to normal paletted textures in that they both have image data and a palette.
VQ texture are decompressed by the RAGE PRO at run time. Space savings and performance savings
can be signicant. For example, a 128x64 texture will fit into the RAGE PRO's cache, minimizing the
number of cache misses. This technique also will reduce the memory bandwidth that is required for
texture fetches, and allow more textures to be stored in local memory.

To create a VQ Texture, a palette must be created A3IlBPCIF_TexturePaletteCreateTlhe first
argument is an enumeration constant that defines the type of palette to create and should be set to
C3D_ECI_TMAP_VQ. The second argumentis an array of 256 entries specifying the code book, which
has the following syntax:

typedef struct {
C3D_UINTL16 ul; // upper-left of 2x2 block
C3D_UINTL16 ur; // upper-right of 2x2 block
C3D_UINT16 II; // lower-left of 2x2 block
C3D_UINTL16 Ir; // upper-right of 2x2 block

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 4-5

Vector Quantization (VQ) Compression

} C3D_CODEBOOKENTRY, *C3D_PCODEBOOKENTRY;

When finished with the texture, the palette should be destroyed by calling the
ATI3DCIF_TexturePaletteDestrdynction, with the palette’s handle as an argument.

It is possible to create mipmapped VQ textures. The same code book will be used for all the mipmap
levels. Textures should be pre-compressed for better performance.

The following examples demonstrate several operations related to VQ textures:

Example 1: Creating a Palette

C3D_CODEBOOK cbCodeBook[256];
C3D_HTXPAL hTXPal;

/I cbTempCodeBook: code book from read in from a VQ Texture file
/I copy it into a code book structure for (intj = 0; j < 256; j++)

{
cbCodeBook][j].ul = cbTempCodeBook]j].ul;
cbCodeBook][j].ur = cbTempCodeBook][j].ur;
cbCodeBook]j].Il = cbTempCodeBook[j].Il;
cbCodeBook]j].Ir = cbTempCodeBook[j].Ir;
}
if (ATIBDCIF_TexturePaletteCreate(C3D_ECI_TMAP_VQ, chCodeBook, &hTXPal)
I=C3D_EC_OK
/I handle error
}

Example 2: Creating a VQ Texture

/I this example registers a 64x64 VQ Texture
C3D_HTXPAL hTXPal;

C3D_HTX hTX;

plndexMapAddress;

/I piIndexMapAddress, this is a pointer to the index map of the VQ Texture
/I read in from a VQ Texture file

/I create the CODEBOOK structure and create the palette using
/I ATI3DCIF_TexturePaletteCreate to receive a valid handle
ZeroMemory(&TMap, sizeof(TMap));

TMap.u32Size = sizeof(TMap);

TMap.apvlLevels[0] = pIndexMapAddress;

TMap.bMipMap = FALSE;

TMap.u32MaxMapXSizelLg2 = 6;

TMap.u32MaxMapYSizelLg2 = 6;

TMap.eTexFormat = C3D_ETF_VQ;
SET_CIF_COLOR(TMap.clrTexChromakKey, 0, 0, 0, 0);
TMap.htxpalTexPalette= hTXPal;

/I register the texture
ecRetVal = ATI3DCIF_TextureReg (&TMap, &hTX);

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
4-6 Proprietary and Confidential

TL Vertex Type (C3D_TLVERTEX)

if (ecRetVal I= C3D_EC_OK)

{
/I destroy palette
ATI3DCIF_TexturePaletteDestroy(hTXPal);
/I other error handling

}

Example 3: Destroying the Palette

/I unregister texture
ecRetVal = ATI3DCIF_TextureUnreg(hTX);
if (ecRetVal I= C3D_EC_OK)

{

// handle error

}

ecRetVal = ATI3DCIF_TexturePaletteDestroy (hTXPal);
if (ecRetVal I= C3D_EC_OK)

// handle error

TL Vertex Type (C3D _TLVERTEX)

A newC3D_TLVERTEXertex type has been implemented. This vertex type is highly portable and
faster than older vertex types on the RAGE PRO family of accelerators. The portable nature of the
C3D_TLVERTEX vertex type helps eliminate the need for copying/reformatting of vertex data when
porting applications to the ATI3DCIF driver interface.

The C3D_TLVERTEX vertex type has the following syntax:

typedef struct {

union {
C3D_FLOAT32 sx; /I screen X
C3D_FLOAT32 x;

h

union {
C3D_FLOAT32 sy; /I screen'Y
C3D_FLOAT32 v;

h

union {
C3D_FLOAT32 sz; /I screen Z
C3D_FLOAT32 z;

h

union {
C3D_FLOAT32 rhw; Il reciprocal of the homogenious W
C3D_FLOAT32 w;

h

union {
C3D_UINT32 color; // diffuse color

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30

Proprietary and Confidential 4-7

TL Vertex Type (C3D_TLVERTEX)

struct {
C3D_UINT8b;
C3D_UINT8g;
C3D_UINTSr,
C3D_UINT8a;
h
h
union {
C3D_UINT32 specular;// specular color
struct {
C3D_UINT8spec_b;
C3D_UINT8spec_g;
C3D_UINT8spec_r;
C3D_UINT8spec_a;
h
h
union {
C3D_FLOAT32 tu; Il texture U
C3D_FLOAT32 s;
h
union {
C3D_FLOAT32 tv; /I texture V
C3D_FLOAT32 t;
h
struct {

C3D_FLOAT32 reservedl,;
C3D_FLOAT32 reserved?;
C3D_FLOAT32 reserveds;
} composite;
} C3D_TLVERTEX;

In keeping with current industry standards, note that the texture coordinates for the C3D_TLVERTEX
are now non-homogenous u andtu &nd tv) coordinates. In th€3D_VTCFand older vertex types,
texture coordinates were specified as homogenous s and t (i.e., s = u/w and t = v/w).

The current vertex type may be changed by calih3DCIF_ContextSetStaweith the state flag
C3D_ERS_VERTEX_TYPE and the state data pointin@t82 EVERTEXnum specifying the vertex
type. This must be done to choose the C3D_TLVERTEX vertex type, because the defaultis C3D_VTCF.

The C3D_VTF, C3D_VCF and C3D_VF vertex types are no longer supported by RAGE PRO. Support
for the C3D_VTCF vertex type has been maintained, however.

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
4-8 Proprietary and Confidential

Introduction

This chapter describes the ATI3DCIF functions and data types supported under Windows 95.

Windows 95 Functions

ATI3DCIF_ContextCreate

Version
1.0

Syntax
C3D_HRC DLLEXPORT WINAPI ATI3DCIF_ContextCreate (
void);
Arguments

None.

Return Value

A C3D_HRChandle identifying the rendering context if successful, otherwise NULL.

Description

This function creates an ATI3DCIF rendering context. If successful, it ret@B8BaHRChandle
which uniquely identifies the rendering context. The handle is used in subsequent ATI3DCIF
functions which reference the context.

Prior to creating the rendering context, the application must load and initialize the ATI3DCIF
module by callincgATI3DCIF_Init Before terminating, the application must destroy the rendering
context by callingATISDCIF_ContextDestroto free system resources.

See Also

ATI3DCIF_Init, ATI3DCIF_ContextDestroy

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-1

Windows 95 Functions

ATISDCIF_ContextDestroy

Version
1.0

Syntax
void DLLEXPORT WINAPI ATI3DCIF_ContextDestroy (
C3D_HRC hRC);
Arguments
hRC C3D_HRChandle to rendering context

Return Value

None.

Description

This function destroys the rendering context identified by hRC. The context must have been created
by a previous call tATI3DCIF_ContextCreateéAn application must destroy the rendering context
before terminating to free system resources.

See Also

ATI3DCIF_ContextCreate

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-2 Proprietary and Confidential

Windows 95 Functions

ATISDCIF_ContextSetState

Version
1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_ContextSetState (
C3D_HRC hRC,
C3D_ERSID eRStatelD,
C3D_PRSDATA pRStateData);

Arguments

hRC C3D_HRChandle to rendering context
eRStatelD C3D_ERSIDenumeration specifying state to set
pRStateData C3D_PRSDATAointer to new state data

Return Value
C3D_EC_OK if successful, otherwis€C8D_ECerror code.

Description

This function modifies a rendering state in the context identified by hRC. The state to be modified is
specified by eRStatelD. pRStateData points to a data object containing new state information. The data
type addressed by pRStateData depends on eRStatelD. The following table lists the type of object pointed
to by pRStateData for each eRStatelD constant, as well as the default states set on context creation.

eRStatelD pRStateData Context Default

C3D_ERS FG_CLR pointer to aC3D_COLOR {0,0,0, 0}
structure specifying the fog color

C3D_ERS_VERTEX_TYPE pointer toC3D_EVERTEX C3D_EV_VTCF
enumeration specifying vertex
type

C3D_ERS_PRIM_TYPE pointer to &C3D_EPRIM C3D_EPRIM_TRI
enumeration specifying primitive
type

C3D_ERS _SOLID_CLR pointer to &£3D_COLOR {0, 0, 0, 0}
structure specifying solid color

C3D_ERS _SHADE_MODE pointer toC3D_ESHADE C3D_ESH_SMOOTH
enumeration specifying shading
mode

C3D_ERS_TMAP_EN pointer to a BOOL enabling or FALSE
disabling texture mapping.

C3D_ERS TMAP_SELECT pointer to aC3D_HTXhandle NULL

specifying texture
(continued on next page)

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-3

Windows 95 Functions

eRStatelD
C3D_ERS_TMAP_LIGHT

C3D_ERS_TMAP_FILTER

C3D_ERS_TMAP_PERSP_COR

C3D_ERS_TMAP_TEXOP

C3D_ERS_ALPHA_SRC

C3D_ERS_ALPHA DST

C3D_ERS_ SURF_DRAW_PTR

C3D_ERS_ SURF_DRAW_PITCH

C3D_ERS_ SURF_DRAW_PF

C3D_ERS_SURF_VPORT

C3D_ERS_FOG_EN

C3D_ERS_DITHER_EN

C3D_ERS_Z CMP_FNC

C3D_ERS_Z_MODE

pRStateData Context Default
pointer toC3D_ETLIGHT C3D_ETL_NONE
enumeration specifying texture

lighting mode

pointer to &C3D_ETEXFILTER C3D_ETFILT_MINPNT_
specifying texture filtering mode MAG2BY2

pointer to &C3D_ETPERSPCOR C3D_ETPC_THREE
enumeration specifying texture
perspective correction level

pointer to &C3D_ETEXOP C3D_ETEXOP_NONE
enumeration specifying texel
rendering operation

pointer to &C3D_EASRC C3D_EASRC_ONE
enumeration specifying source
alpha blend mode

pointer to &C3D_EADST C3D_EADST_ZERO
enumeration specifying
destination alpha blend mode

pointer to a C3D_PVOID pointer set to address of
specifying the address of the on-screen desktop
drawing surface region. The region on rendering
address must be an integer context creation
multiple of 8 bytes

pointer to a C3D_UINT32 specifyingset to pitch of on-screen
the pitch of the drawing surface regiatesktop region on
in pixels. The pitch must be an integeendering context

multiple of 8 pixels creation

pointer to &C3D_EPIXFMT set to pixel format of
enumeration specifying the on-screen desktop
drawing surface region pixel region on rendering
format context creation

pointer to &C3D_RECTstructure set to coordinates of
specifying a rectangular clipping visible desktop
region on the drawing surface. rectangular region on
Primitives will not be rendered rendering context
outside of this viewport rectanglecreation

pointer to a BOOL enabling or FALSE
disabling fog

pointer to a BOOL enabling or TRUE
disabling dither

pointer to &3D_EZCMP C3D_EZCMP_ALWAYS
enumeration specifying the Z
compare function.

pointer to &C3D_EZMODE C3D_EZMODE_OFF
enumeration specifying the Z
testing mode

(continued on next page)

SDK-C02700 Rev. 1.30
5-4

© 1997 ATI Technologies Inc.
Proprietary and Confidential

Windows 95 Functions

eRStatelD
C3D_ERS_SURF_Z PTR

C3D_ERS_SURF_Z PITCH

C3D_ERS_SURF_SCISSOR

C3D_ERS_COMPOSITE_EN

C3D_ERS_COMPOSITE_SELECT

C3D_ERS_COMPOSITE_FNC

C3D_ERS_COMPOSITE_FACTOR

C3D_ERS_COMPOSITE_FILTER

C3D_ERS_COMPOSITE_FACTOR
_ALPHA

pRStateData Context Default

pointer to a C3D_PVOID pointer NULL
specifying the address of the

Z buffer

pointer to a C3D_UINT32 set to pitch of on-screen
specifying the pitch of the Z buffedesktop region on

in pixels rendering context

creation

pointer to &3D_RECTstructure set to coordinates of
specifying a rectangular clipping visible desktop
region on the drawing surface. rectangular region on
Primitives will not be rendered rendering context
outside of this scissors rectanglecreation

The scissors region differs from

the viewport region in that its

origin is always fixed at the top

left corner of the surface

pointer to a BOOL enabling or FALSE
disabling texture compositing

pointer to aC3D_HTXhandle NULL
specifying the secondary
composite texture

pointer to a C3D_ETEXCOMPFCN
C3D_ETEXCOMPFCN _BLEND
enumeration specifying the texture

compositing function

pointer to a C3D_UNIT32 8
specifying blend factor if
C3D_ETEXCOMPFCN_BLEND
compositing function selected.
This value must be an integer
between 0 and 15

pointer to &C3D_ETEXFILTER C3D_ETFILT_MIN2BY2
specifying the filtering mode for the MAG2BY2

secondary composite texture. The

only texturing modes supported for

the secondary filter are:

C3D_ETFILT_MINPNT_MAGPNT,
C3D_ETFILT_MINPNT_MAG2BY?2,
C3D_ETFILT_MIN2BY2_MAGPNT

and

C3D_ETFILT_MIN2BY2_MAG2BY?2

pointer to a BOOL enabling blendrALSE
factor to be taken from composite
texture’s alpha channel for blend
texture compositing function

(continued on next page)

© 1997 ATI Technologies Inc.
Proprietary and Confidential

SDK-C02700 Rev. 1.30
5-5

Windows 95 Functions

eRStatelD
C3D_ERS LOD BIAS LEVEL

C3D_ERS_ALPHA_DST_TEST_ENABLE pointer to a BOOL enabling or

C3D_ERS_ALPHA DST TEST_FNC

C3D_ERS_ALPHA_DST_WRITE_SELECTointer to aC3D_EASEL

C3D_ERS_ALPHA DST REFERENCE

C3D_ERS_SPECULAR

pRStateData Context Default

pointer to a C3D_UNIT32 0
specifying the LOD bias. This
value must be an integer between
0 and 15

FALSE
disabling destination alpha testing

pointer to &£3D_EACMP C3D_EACMP_ALWAYS
enumeration specifying

destination alpha test compare

function

C3D_EASEL_ZERO
enumeration specifying the alpha

source for destination alpha test

alpha write

pointer to a C3D_UNIT32 0
specifying reference alpha value
for destination alpha testing

pointer to a BOOL enabling or
disabling specular lighting

FALSE

The data types that may be addressed by pRStateData are described in detail in other sections of this

reference.

NOTE: z-buffers are only supported in the 3D RAGE Il graphics accelerator or later.

See Also

C3D_EACMPC3D_EADSTC3D_EASELC3D_EASRCC3D_EPIXFMT C3D_EPRIM
C3D_ESHADEC3D_ETEXCOMPFCNC3D_ETEXFILTERC3D_ETLIGHT
C3D_ETPERSPCOR3D_ETEXOPC3D_EVERTEXC3D COLORC3D_HTXC3D_EZCMP

C3D_EZMODE

SDK-C02700 Rev. 1.30
5-6

© 1997 ATI Technologies Inc.
Proprietary and Confidential

Windows 95 Functions

ATI3DCIF_Getinfo

Version
1.0

Syntax
C3D_EC DLLEXPORT WINAPI ATI3DCIF_Getinfo (
C3D_P3DCIFINFO pCIFInfo);
Arguments
pCIFinfo pointer to &£3D_3DCIFINFOstructure to be initialized with ATI3DCIF
module information.
Return Value
C3D_EC_OK if successful, otherwis€C8D_ECerror code.

Description

This function returns information about the graphics subsystem and the ATl 3D RAGE graphics
accelerator in th€3D_3DCIFINFOstructure pointed to by pCIFInfo. Prior to calling this function,
the u32Size member of the C3D_3DCIFINFO structure must be set to the size of the structure.
Otherwise, the function will fail.

See Also
C3D_3DCIFINFO

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-7

Windows 95 Functions

ATI3DCIF_Init

Version
1.0

Syntax
C3D_EC DLLEXPORT WINAPI ATI3DCIF_Init (
void);
Arguments

None.

Return Value
C3D_EC_OK if successful, otherwiseC8D_ ECerror code.

Description

This function loads and initializes the ATI3DCIF module. This function must be called before any
other ATI3DCIF functions are called. Otherwise, the ATISDCIF functions will fail.

Before the application terminates, it must terminate and unload the ATI3DCIF driver by calling
ATI3DCIF_Term

See Also
ATI3DCIF _Term

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-8 Proprietary and Confidential

Windows 95 Functions

ATISDCIF_RenderBegin

Version
1.0

Syntax
C3D_EC DLLEXPORT WINAPI ATI3DCIF_RenderBegin (
C3D_HRC hRC);
Arguments
hRC C3D_HRChandle to rendering context

Return Value
C3D_EC_OK if successful, otherwis€C8D_ECerror code.

Description

This function prepares the hardware to draw using the context identified by hRC. It must be called
prior to any other ATI3DCIF_Renderxxx functions. Typically, it is called at the beginning of each
frame update before rendering primitives WAthI3DCIF_RenderPrimLisor
ATI3DCIF_RenderPrimStrip

After completing rendering operations, the application shouldhGaBDCIF_RenderEndo end
the 3D hardware drawing operations. This will free the graphics hardware for 2D operations.

See Also
ATI3DCIF_RenderEndATI3DCIF_RenderPrimListATI3DCIF_RenderPrimStrip

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-9

Windows 95 Functions

ATI3DCIF_RenderEnd

Version
1.0

Syntax
C3D_EC DLLEXPORT WINAPI ATI3DCIF_RenderEnd (
void);
Arguments

None.

Return Value
C3D_EC_OK if successful, otherwiseC8D_ ECerror code.

Description

This function terminates 3D hardware rendering operations initiated by a prior call to
ATI3DCIF_RenderBegimifter completing rendering operations, for instance at the end of frame
updates, the application should call ATISBDCIF_RenderEnd to end the 3D hardware drawing
operations. This will free up the graphics hardware to resume 2D operations.

See Also
ATI3DCIF_RenderBegirATI3DCIF_RenderPrimListATI3DCIF_RenderPrimStrip

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.

5-10

Proprietary and Confidential

Windows 95 Functions

ATI3DCIF_RenderPrimList

Version
1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_RenderPrimList (
C3D_VLIST vList,
C3D_UINT32 u32NumVert);

Arguments

vList array of pointers to primitive list vertex structures
u32NumVert number of vertices in the primitive

Return Value
C3D_EC_OK if successful, otherwis€C8D_ECerror code.

Description

This function draws a primitive list using the current primitive type of the rendering context. By
default, the rendering context is initialized to draw triangle primitives. The primitive type may be
modified by callingATISBDCIF_ContextSetStateith eRStatelD set to C3D_ERS_PRIM_TYPE

and pRStateData set to the address@8@_EPRIMenumeration specifying the new primitive

type. vList is an array of pointers to vertex structures representing the vertices in the primitive list.
The default rendering context vertex structur€é3®_VTCFE This may be changed by calling
ATI3DCIF_ContextSetState with eRStatelD setto C3D_ERS_VERTEX_TYPE, and pRStateData
set to the address ofG8D_EVERTE>enumeration specifying the new vertex structure type.
u32NumVerts specifies the number of vertices in the primitive list.

See Also
ATI3DCIF_ContextCreate

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-11

Windows 95 Functions

ATI3DCIF_RenderPrimStrip

Version
1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_RenderPrimStrip (
C3D_VSTRIP vStrip,
C3D_UINT32 u32NumVert);

Arguments

vStrip array of primitive strip vertex structures
u32NumVert number of vertices in the primitive

Return Value
C3D_EC_OK if successful, otherwis€C8D_ECerror code.

Description

This function draws a primitive strip using the current primitive type of the rendering context. By
default, the rendering context is initialized to draw triangle primitives. The primitive type may be
modified by callingATISBDCIF_ContextSetStateith eRStatelD set to C3D_ERS_PRIM_TYPE

and pRStateData set to the address@8@_EPRIMenumeration specifying the new primitive

type. vStrip is an array of vertex structures representing the vertices in the primitive strip. The
default rendering context vertex structur€®D_VTCFE This may be changed by calling
ATI3DCIF_ContextSetState with eRStatelD setto C3D_ERS_VERTEX_TYPE, and pRStateData
set to the address ofG8D_EVERTE>enumeration specifying the new vertex structure type.
u32NumVerts specifies the number of vertices in the primitive strip.

See Also
ATI3DCIF_ContextCreate

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.

5-12

Proprietary and Confidential

Windows 95 Functions

ATI3DCIF_RenderSwitch

Version
1.0

Syntax
C3D_EC DLLEXPORT WINAPI ATI3DCIF_RenderSwitch (
C3D_HRC hNewRC);
Arguments

hNewRC C3D_HRChandle of rendering context to switch to

Return Value
C3D_EC_OK if successful, otherwis€C8D_ECerror code.

Description
NOTE: This function is not yet implemented.

This function switches 3D rendering operations to the rendering context identified by hNewRC. It
is the functional equivalent of callilgTI3DCIF_RenderEnébr the existing context followed by
ATI3DCIF_RenderBegiwith the handle of the new context. This function is only valid while in a
3D rendering state, that is, while a rendering operation has been initiated by calling
ATI3DCIF_RenderBegin.

See Also
ATI3DCIF_RenderBegirATI3SBDCIF_RenderEnd

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-13

Windows 95 Functions

ATI3DCIF_Term

Version
1.0

Syntax
C3D_EC DLLEXPORT WINAPI ATI3DCIF_Term (
void);
Arguments

None.

Return Value
TRUE if successful, otherwise FALSE.

Description

This function terminates and unloads the ATI3DCIF module. The module must have been loaded

previously by a call t&ATISDCIF_Init. An application must unload the ATI3DCIF module before
terminating to free system resources.

See Also
ATI3DCIF_Init

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-14 Proprietary and Confidential

Windows 95 Functions

ATI3DCIF_TexturePaletteCreate

Version
1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_TexturePaletteCreate
C3D_ECI_TMAP_TYPE epalette,
C3D_PPALETTENTRY pclrPalette,
C3D_PHTXPAL phtpalCreated);

Arguments
epalette kind of palette to create (Cl4, CI8, or VQ code book)
pcirPalette array of 16 or 2863D_ PALETTENTRtructures, or 256-entry code
book (C3D_PCODEBOOKENTRY)
phtpalCreated palette handle to be initialized

Return Value
C3D_EC_OK if successful, otherwis€C8D_ECerror code.

Description

This function creates a 16 or 256 entry logical texture palette within ATI3DCIF. The handle
obtained by calling this function is assigned to the htxpalTexPalette member of a Cl4 or CI8
texture’sC3D_TMAPstructure before the texture is registered. 16 entry palettes are used with Cl4
textures and 256 entry palettes with CI8 textures. epalette specifies what kind of palette to create.
The colors of each entry in the palette are specified by the pclrPalette array passed to this function.
If successful, th€3D_HTXPALhandle addressed by phtpalCreated will be set to a valid value.
Otherwise, it is set to NULL.

After the application has finished using the texture and has unregistered it, the palette should be
destroyed by callindTISDCIF_TexturePaletteDestroy

NOTE: Texture palettes, C3D_ETF_ClI4, and C3D_ETF_CI8 texel formats are only available with
the RAGE Il or later graphics accelerators. All other formats are available with both the 3D RAGE
and 3D RAGE Il accelerators.

See Also

ATI3DCIF_TexturePaletteDestroy

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-15

Windows 95 Functions

ATI3DCIF_TexturePaletteDestroy

Version
1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_Texture
C3D_HTXPAL htxpalToDestroy);

Arguments

htxpalToDestroy handle of texture palette to destroy

Return Value
C3D_EC_OK if successful, otherwis€C8D_ECerror code.

Description

This function destroys a logical texture palette created by callit®@DCIF_TexturePaletteCreate
A texture palette must be destroyed after the texture it is assigned to has been unregistered, and
before terminating ATI3DCIF.

NOTE: Texture palettes are only available with the 3D RAGE Il graphics accelerator.

See Also
ATI3SDCIF_TexturePaletteCreate

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-16 Proprietary and Confidential

Windows 95 Functions

ATISDCIF _TextureReg

Version
1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_TextureReg (
C3D_PTMAP ptmapToReg,
C3D_PHTX phtxTMap);

Arguments

ptmapToReg pointer to@3D_TMAPstructure describing the texture
phtxTMap pointer taC3D_HTXto be initialized

Return Value
A C3D_EC_OK if successful, otherwise€C8D_ECerror code.

Description

This function registers a texture with the ATI3DCIF module. ptmapToReg poine3b aTMAP
structure providing texture information required by the ATI3DCIF module. If successful, this
function initializes thec3D_HTXhandle pointed to by phtxTMap with a unique value identifying
the texture. Otherwise, the handle is set to NULL.

To map the texture, the application must (1) select the texture by calling
ATI3DCIF_ContextSetStateith eRStatelD set to C3D_ERS_TMAP_SELECT and pRStateData
pointing to the texture’€3D_HTXhandle, and (2) enable texture mapping by calling
ATI3DCIF_ContextSetStatith eRStatelD set to C3D_ERS_TMAP_EN and pRStateData
pointing to a BOOL set to TRUE.

See Also
ATI3DCIF_ContextSetStat€3D_TMAP

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-17

Windows 95 Functions

ATISDCIF_TextureUnreg

Version
1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_TextureUneg (
C3D_HTX htxToUnreg);

Arguments

htxToUnreg C3D_HTXhandle of texture to unregister

Return Value
C3D_EC_OK if successful, otherwis€C8D_ECerror code.

Description

This function unregisters the texture map identified by htxToUnreg. This texture must have been
registered with the ATISDCIF module by a previous cahTd3DCIF_TextureReg

See Also
ATI3DCIF_TextureReg

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-18 Proprietary and Confidential

ATI3DCIF Data Types

ATISDCIF Data Types
ATI3DCIF Fundamental Data Types

C3D_BOOL unsigned int
C3D_INT32 int
C3D_UINT32 unsigned int
C3D_UINT16 unsigned short
C3D_UINTS8 unsigned char
C3D_FLOAT32 float
C3D_PBOOL unsigned int *
C3D_PINT32 int *
C3D_PUINT32 unsigned int *
C3D_PUINT16 unsigned short *
C3D_PUINTS8 unsigned char *
C3D_PFLOAT32 float *
C3D_PVOID void *

© 1997 ATI Technologies Inc.
Proprietary and Confidential

SDK-C02700 Rev. 1.30
5-19

ATI3DCIF Data Types

C3D_3DCIFINFO

Version
1.0

Syntax
typedef struct {

C3D_UINT32 u32Size;
C3D_UINT32 u32FrameBuffBase;
C3D_UINT32 u320ffScreenHeap;
C3D_UINT32 u320ffScreenSize;
C3D_UINT32 u32TotalRAM,;
C3D_UINT32 u32ASICID;
C3D_UINT32 u32ASICRevision;
C3D_UINT32 u32CIFCapsi;
C3D_UINT32 u32CIFCaps2;
C3D_UINT32 u32CIFCaps3;
C3D_UINT32 u32CIFCaps4;
C3D_UINT32 u32CIFCaps5;

} C3D_3DCIFINFO, * C3D_P3DCIFINFO;

Members

u32Size
u32FrameBuffBase
u320ffScreenHeap
u320ffScreenSize
u32TotalRAM
u32ASICID
u32ASICRevision
u32CIFCapsl
u32CIFCaps2
u32CIFCaps3
u32CIFCaps4
u32CIFCapsh

Description

size of C3D_3DCIFINFO structure
host pointer to the base of the frame buffer
host pointer to the off-screen heap
size of the off-screen heap
total amount of video RAM on the graphics board
RAGE ASIC ID
RAGE ASIC revision
ATI3DCIF module capabilities, field 1
ATI3DCIF module capabilities, field 2 (RAGE PRO)
ATI3DCIF module capabilities, field 3 (reserved for future use)
ATI3DCIF module capabilities, field 4 (reserved for future use)
ATI3DCIF module capabilities, field 5 (reserved for future use)

This structure is used by tAG I3DCIF_Getlnfdunction to retrieve information about the graphics
subsystem and the ATl 3D RAGE graphics accelerator. Prior to calling ATISBDCIF_Getlinfo, the
client application must set the u32Size member to the size of this structure. Otherwise,
ATI3DCIF_GetInfo will fail.

In version 4.02.0217 of ATI3DCIF, the u32CIFCaps member was added to this structure. In
version 4.03.0039 of ATI3DCIF, the u32CIFCaps member was renamed u32CIFCaps1, and four
more capabilities fields, u32CIFCaps2 to u32CIFCaps5, were added to this structure. In version

SDK-C02700 Rev. 1.30
5-20

© 1997 ATI Technologies Inc.
Proprietary and Confidential

ATI3DCIF Data Types

4.03.2511 of ATISDCIF, the u32CIFCaps2 member was defined to support additional capabilities
under RAGE PRO. u32CIFCaps3 to u32CIFCaps5 are currently unused and are reserved for future
use. The application must ensure that the ATI3DCIF module is version 4.03.0039 or greater to use
the u32CIFCapsl member, and version 4.03.2511 or greater to use the u32CIFCaps2 member. The
ATI3DCIF.DLL version number may be determined by right-clicking on the file under Windows
Explorer, selecting Properties, and clicking on the Version tab. ATI3DCIF.DLL is located in the
Windows 95 SYSTEM directory.

The following table list&i32CIFCapslflags:

C3D_CAPS1 BASE baseline functionality

C3D_CAPS1_FOG fog support

C3D_CAPS1_POINT point primitive support
C3D_CAPS1_RECT screen-aligned rectangle primitive support
C3D_CAPS1 Z BUFFER Z buffer support

C3D_CAPS1 _Cl4 TMAP 4 bit color index texture support
C3D_CAPS1_CI8 TMAP 8 bit color index texture support

C3D_CAPS1_LOAD_OBJECT bus-master data loading support
C3D_CAPS1_DITHER_EN dithering on/off support

C3D_CAPS1 ENH_PERSP enhanced perspective levels available
C3D_CAPS1_SCISSOR fixed origin clipping region support
C3D_CAPS1 PROFILE_IF profile interface available

C3D_CAPS1_BASE represents the baseline functionality available in versions 4.02.0217 and
earlier of ATISDCIF. All other capabilities were added after version 4.02.0217.

The following table listi32CIFCaps2flags:

C3D_CAPS2 _TEXTURE_COMPOSITE second texture and composite blend factor
support
C3D_CAPS2_TEXTURE_CLAMP clamp texture coordinates to 1.0

enable/disable
C3D_CAPS2_DESTINATION_ALPHA BLEND extended alpha blending modes supported
C3D_CAPS2_TEXURE_TILING texture tiling support

See Also
ATI3DCIF_Getinfo

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-21

ATI3DCIF Data Types

C3D_CODEBOOKENTRY

Version
1.0

Syntax

typedef struct {
C3D_UNIT16 ul;
C3D_UNIT16 ur;
C3D_UNIT16 1I;
C3D_UNIT16 Ir;
} C3D_CODEBOOKENTRY, * C3D_PCODEBOOKENTRY;

Members

ul upper-left of 2x2 block
ur upper-right of 2x2 block
I lower-left of 2x2 block
Ir lower-right of 2x2 block

Description

This structure is used to specify a single code book entry for VQ compressed textures. An array of
256 of these entries will be passed IAINISDCIF_TexturePaletteCregtalong with the
C3D_ECI_TMAP_VQ enumeration constant, to specify that a VQ texture be created, Upon
successful creation, a valid codebook handle will be returned.

When finished with the texture, the codebook should be destroyed by calling the
ATI3DCIF_TexturePaletteDestrdynction, with the codebook's handle as an argument.

See Also

None

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-22 Proprietary and Confidential

ATI3DCIF Data Types

C3D_COLOR

Version
1.0

Syntax

typedef union
struct {
unsigned r: 8;
unsigned g: 8;
unsigned b: 8;
unsigned a: 8;
3
C3D_UINT32 u32All
} C3D_COLOR, * C3D_PCOLOR;

Members
r red color component
g green color component
b blue color component
a alpha color component

Description

This structure is used to specify the RGBA colors when setting the background and solid colors of
the rendering context and the texel transparency chroma key coloGBEhE MAPstructure. The
C3D_TMAP structure is used to provide texture information to the ATI3DCIF module when
registering a texture map.

On context creation, the solid color is set to black (RGBA ={0, 0, 0, 0}). To modify the solid color,
call ATI3BDCIF_ContextSetStateith eRStatelD set to C3D_ERS_SOLID_CLR and pRStateData
set to the address of a C3D_COLOR structure specifying the new color.

See Also

ATI3DCIF_ContextSetStagt€3D_ERSIDC3D_TMAP

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-23

ATI3DCIF Data Types

C3D_EACMP

Version
1.0

Syntax

typedef enum {
C3D_EACMP_NEVER =0,
C3D_EACMP_LESS =1,
C3D_EACMP_LEQUAL = 2,
C3D_EACMP_EQUAL =3,
C3D_EACMP_GEQUAL =4,
C3D_EACMP_GREATER =5,
C3D_EACMP_NOTEQUAL = 6,
C3D_EACMP_ALWAYS =7,
C3D_EACMP_MAX =8,
C3D_EACMP_FORCE_U32 = C3D_FORCE_SIZE

} C3D_EACMP, * C3D_PEACMP;

Constants

C3D_EACMP_NEVER alpha compare never passes

C3D_EACMP_LESS alpha compare passes if write select alpha is less
than reference alpha

C3D_EACMP_LEQUAL alpha compare passes if write select alpha is less
than or equal to reference alpha

C3D_EACMP_EQUAL alpha compare passes if write select alpha is
equal to reference alpha

C3D_EACMP_GEQUAL alpha compare passes if write select alpha is

greater than or equal to reference alpha

C3D_EACMP_GREATER alpha compare passes if write select alpha is
greater than reference alpha

C3D_EACMP_NOTEQUAL alpha compare passes if write select alpha is not
equal to reference alpha

C3D_EACMP_ALWAYS alpha compare always passes
C3D_EACMP_MAX invalid enumeration
Description

C3D_EACMP constants specify the compare function to use during destination alpha testing. The
compare function compares the alpha value from the current alpha write source with a reference
alpha value maintained in the rendering context. If the compare passes, the primitive’s RGB data is
written to the destination RGB channels, and the alpha value from the alpha write source is written
to the destination alpha channel. Otherwise, the destination reamins unchanged.

The alpha write source is represented byGBB_EASElenumeration and is selected by calling
ATI3DCIF_ContextSetStaweth the state flag C3D_ERS_ALPHA_DST_WRITE_SELECT. The
reference alpha value is set by calling ATI3DCIF_ContextSetState with the state flag

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-24 Proprietary and Confidential

ATI3DCIF Data Types

C3D_ERS_ALPHA_DST_REFERENCE and the state data pointing to a DWORD representing the
reference alpha value. Note that the reference value must be in the range of the alpha channel bit
depth. For example, if the channel is eight bits wide, as in the case of the ARGB8888 pixel format,
the reference alpha must be in the range of 0 to 255.

The compare function is set by calliAgI3DCIF_ContextSetStateith the state flag
C3D_ERS_ALPHA DST_TEST_FNC and the state data pointing to a C3D_EACMP enum.
Destination alpha testing is enabled and disabled by calling ATISBDCIF_ContextSetState with the
state flag C3D_ERS_ALPHA_DST_TEST_ENABLE and the state data pointing to a BOOL
variable specifying the enable state.

See Also
ATI3DCIF_ContextSetStgt€3D_EASEL

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-25

ATI3DCIF Data Types

C3D_EADST

Version
1.0

Syntax

typedef enum {
C3D_EADST_ZERO =0,
C3D_EADST_ONE =1,
C3D_EADST_SRCCLR =2,
C3D_EADST_INVSRCCLR = 3,
C3D_EADST_SRCALPHA = 4,
C3D_EADST_INVSRCALPHA =5,
C3D_EADST_DSTALPHA = 6, Il (RAGE PRO)
C3D_EADST_INVDSTALPHA =7, /I (RAGE PRO)
C3D_EADST_NUM =8,
C3D_EADST_FORCE_U32 = C3D_FORCE_SIZE

} C3D_EADST, * C3D_PEADST,

Constants
C3D_EADST_ZERO Blend factor is (0, 0, 0)
C3D_EADST_ONE Blend factor is (1, 1, 1)
C3D_EADST_SRCCLR Blend factor is (Rs, Gs, Bs), where (Rs, Gs, Bs) is the source

RGB color
C3D_EADST_INVSRCCLR Blend factor is (1-Rs, 1-Gs, 1-Bs)
C3D_EADST_SRCALPHA Blend factor is (As, As, As), where As is the source alpha value
C3D_EADST_INVSRCALPHA Blend factor is (1-As, 1-As, 1-As)
C3D_EADST_DSTALPHA Blend factor is (Ad, Ad, Ad) (RAGE PRO)
C3D_EADST_INVDSTALPHA Blend factor is (1-Ad, 1-Ad, 1-Ad) (RAGE PRO)
C3D_EADST_NUM invalid enumeration

Description

C3D_EADST constants represent the destination alpha blending factors which may be set for the
rendering context. Alpha blending is performed according to the following equation:

destination color = (source colersource alpha factor) + (destination cotadestination alpha factor)
The source alpha blending factors are represented §§3ihe EASR&numeration.
The default mode set on context creation is C3D_EADST_ZERO. To modify the destination alpha

blending factor, calATISDCIF_ContextSetStateith eRStatelD set to C3D_ERS_ALPHA DST
and pRStateData set to the address of a C3D_EADST object specifying the new state.

See Also
ATI3DCIF_ContextSetStgt€3D_EASRCC3D_ERSID

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-26 Proprietary and Confidential

ATI3DCIF Data Types

C3D EASEL

Version
1.0

Syntax

typedef enum {
C3D_EASEL_ZERO =0,
C3D_EASEL_ONE =1,
C3D_EASEL_SRCALPHA =4,
C3D_EASEL_INVSRCALPHA =5,
C3D_EASEL_DSTALPHA =6,
C3D_EASEL_INVDSTALPHA =7,
C3D_EASEL_FORCE_U32 = C3D_FORCE_SIZE
} C3D_EASEL, *C3D_PEASEL;

Constants
C3D_EASEL_ZERO write 0 to all alpha bits
C3D_EASEL_ONE write 1 to all alpha bits
C3D_EASEL_SRCALPHA write source alpha
C3D_EASEL_INVSRCALPHA write 1 - source alpha
C3D_EASEL_DSTALPHA write destination alpha

C3D_EASEL_INVDSTALPHA write 1 - destination alpha

Description

C3D_EASEL constants specify the alpha data written to the destination alpha channel if destination
alpha testing is enabled and the current alpha test compare function has passed the pixel write
operation. For example, if C3D_EASEL_ZERO is selected, all destination alpha bits will be set to
zero. The alpha write data is selected by calii¢BDCIF_ContextSetStateith the state flag
C3D_ERS_ALPHA _DST_WRITE_SELECT and the state data pointing to a C3D_EASEL enum
set to the desired alpha write data. The destination alpha test compare function is selected by calling
ATI3DCIF_ContextSetState with the state flag C3D_ERS_ALPHA_DST_WRITE_FNC and the
state data pointing to@3D_EACMPenum set to the compare function. Destination alpha testing

is enabled and disabled by calling ATI3DCIF_ContextSetState with the state flag
C3D_ERS_ALPHA_DST_WRITE_EN and the state data pointing to a BOOL variable specifying
the enable state.

See Also
ATI3DCIF_ContextSetStgt€3D _EACMP

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-27

ATI3DCIF Data Types

C3D_EASRC

Version
1.0

Syntax

typedef enum {
C3D_EASRC_ZERO =0,
C3D_EASRC_ONE =1,
C3D_EASRC_DSTCLR =2,
C3D_EASRC_INVDSTCLR = 3,
C3D_EASRC_SRCALPHA = 4,
C3D_EASRC_INVSRCALPHA =5,
C3D_EASRC_DSTALPHA = 6, Il (RAGE PRO)
C3D_EASRC_INVDSTALPHA =7, /I (RAGE PRO)
C3D_EASRC_NUM = 8,
C3D_EASRC_FORCE_U32 = C3D_FORCE_SIZE

} C3D_EASRC, * C3D_PEASRC;

Constants
C3D_EASRC_ZERO Blend factor is (0, 0, 0)
C3D_EASRC_ONE Blend factor is (1, 1, 1)
C3D_EASRC_DSTCLR Blend factor is (Rd, Gd, Bd), where (Rd, Gd, Bd) is the

destination RGB color
C3D_EASRC_INVDSTCLR Blend factor is (1-Rd, 1-Gd, 1-Bd)

C3D_EASRC_SRCALPHA Blend factor is (As, As, As), where As is the source alpha
value

C3D_EASRC_INVSRCALPHA Blend factor is (1-As, 1-As, 1-As)
C3D_EASRC_DSTALPHA Blend factor is (Ad, Ad, Ad) (RAGE PRO)
C3D_EASRC_INVDSTALPHA Blend factor is (1-Ad, 1-Ad, 1-Ad) (RAGE PRO)
C3D_EASRC_NUM invalid enumeration

Description

C3D_EASRC constants represent the source alpha blending factors which may be set for the
rendering context. Alpha blending is performed according to the following equation:

destination color = (source colersource alpha factor) + (destination cotadestination alpha factor)
The destination alpha blending factors are represented IG3theEADSTenumeration.
The default mode set on context creation is C3D_EASRC_ONE. To modify the source alpha

blending factor, calhTISDCIF_ContextSetStateith eRStatelD set to C3D_ERS_ALPHA_SRC
and pRStateData set to the address of a C3D_EASRC object specifying the new state.

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-28 Proprietary and Confidential

ATI3DCIF Data Types

See Also
ATI3DCIF_ContextSetStat€3D_EADSTC3D_ERSID

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-29

ATI3DCIF Data Types

C3D_EC

Version
1.0

Syntax

typedef enum {
C3D_EC_OK =0,
C3D_EC_GENFAIL =1,
C3D_EC_MEMALLOCFAIL = 2,
C3D_EC_BADPARM = 3,
C3D_EC_UNUSEDO = 4,
C3D_EC_BADSTATE =5,
C3D_EC_NOTIMPYET = 6,
C3D_EC_UNUSED1 =7,
C3D_EC_CHIPCAPABILITY =8,
C3D_EC_NUM =9,
C3D_EC_FORCE_U32 = C3D_FORCE_SIZE

} C3D_EC, * C3D_PEC;

Constants
C3D_EC_OK success
C3D_EC_GENFAIL generic failure
C3D_EC_MEMALLOCFAIL memory allocation failure
C3D_EC_BADPARM invalid parameter passed to function
C3D_EC_UNUSEDO not used
C3D_EC BADSTATE object entered invalid state
C3D_EC _NOTIMPYET functionality not implemented yet
C3D_EC_UNUSED1 not used
C3D_EC_CHIPCAPABILITY feature not available on this version of 3D RAGE
C3D_EC _NUM invalid enumeration

Description

C3D_EC constants represent the error codes which may be returned by ATISDCIF functions.

See Also

None.

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-30 Proprietary and Confidential

ATI3DCIF Data Types

C3D_ECI_TMAP_TYPE

Version
1.0

Syntax

typedef enum {
C3D_ECI_TMAP_TRUE_COLOR =0,
C3D_ECI_TMAP_4BIT_HI =1,
C3D_ECI_TMAP_4BIT_LOW = 2,
C3D_ECI_TMAP_8BIT = 3,
C3D_ECI_TMAP_VQ = 4, Il (RAGE PRO)
C3D_ECI_TMAP_NUM =5,
C3D_ECI_TMAP_FORCE_U32 = C3D_FORCE_SIZE
} C3D_ECI_TMAP_TYPE;

Constants
C3D_ECI_TMAP_TRUE_COLOR texture format is true color: no palette
C3D_ECI_TMAP_4BIT_HI texture format is Cl4 packed in high nibble: 16 entry palette
C3D_ECI_TMAP_4BIT_LOW texture format is Cl4 packed in low nibble: 16 entry palette
C3D_ECI_TMAP_8BIT texture format is CI8: 256 entry palette
C3D_ECI_TMAP_VQ texture format is 256 entry codebook (RAGE PRO)
C3D_ECI_TMAP_NUM invalid enumeration

Description

C3D_ECI_TMAP_TYPE constants are used in the funchioiBDCIF_TexturePaletteCreate
specify what kind of texture palette to create.

NOTE: Texture palettes are only available with the 3D RAGE Il graphics accelerator or later.

See Also
ATI3DCIF_TexturePaletteCreate

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-31

ATI3DCIF Data Types

C3D_EPIXFMT

Version
1.0

Syntax

typedef enum {

C3D_EPF_RGB1555 = 3,

C3D_EPF_RGB565 = 4,

C3D_EPF_RGB8888 =5,

C3D_EPF_RGB332 =6,

C3D_EPF_Y8 =7,

C3D_EPF_YUV422 =8,

C3D_EPF_FORCE_U32 = C3D_FORCE_SIZE
} C3D_EPIXFMT, * C3D_PEPIXFMT,;

Constants
C3D_EPF_RGB1555 1 bit alpha, 5 bits red, 5 bits green, 5 bits blue
C3D_EPF_RGB565 0 bits alpha, 5 bits red, 6 bits green, 5 bits blue
C3D_EPF_RGB8888 8 bit alpha, 8 bits red, 8 bits green, 8 bits blue
C3D_EPF_RGB332 0 bit alpha, 3 bits red, 3 bits green, 2 bits blue
C3D_EPF_Y8 8 bits Y
C3D_EPF_YuUv422 the pixel format is YUV422 packed YUYV
Description

C3D_EPIXFMT constants are used to specify the pixel format of the drawing surface.

On context creation, the drawing surface pixel format is set to that of the desktop. To modify the
drawing surface pixel format, callTI3DCIF_ContextSetStateith eRStatelD set to
C3D_ERS_SURF_DRAW_PF and pRStateData set to the address of a C3D_EPIXFMT object
specifying the new state.

See Also
ATI3DCIF_ContextSetState

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-32 Proprietary and Confidential

ATI3DCIF Data Types

C3D_EPRIM

Version
1.0

Syntax

typedef enum {

C3D_EPRIM_LINE =0,

C3D_EPRIM_TRI =1,

C3D_EPRIM_QUAD = 2,

C3D_EPRIM_RECT = 3,

C3D_EPRIM_POINT = 4,

C3D_EPRIM_NUM =5,

C3D_EPRIM_FORCE_U32 = C3D_FORCE_SIZE
} C3D_EPRIM, * C3D_PEPRIM;

Constants
C3D_EPRIM_LINE line primitive
C3D_EPRIM_TRI triangle list or strip primitive

C3D_EPRIM_QUAD quadrilateral list or strip primitive
C3D_EPRIM_RECT screen aligned rectangle strip or list primitive
C3D_EPRIM_POINT point list or strip primitive
C3D_EPRIM_NUM invalid enumeration

Description

C3D_EPRIM constants represent the primitive types which may be rendered within the rendering
context when drawing a primitive list or strip. The default mode set on context creation is
C3D_EPRIM_TRI. To modify the primitive type, cAlTI3DCIF_ContextSetStatgth eRStatelD

setto C3D_ERS_PRIM_TYPE and pRStateData set to the address of a C3D_EPRIM object
specifying the new state.

See Also
ATI3DCIF_ContextSetStat€3D_ERSID
NOTE: The C3D_EPRIM_RECT and C3D_EPRIM_POINT types are not available on some earlier

versions of ATI3DCIF. Applications should cAlISDCIF_GetInfoand query the u32CIFCapsl
member of th&€3D_3DCIFINFOstructure to verify the availability of these primitive types.

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-33

ATI3DCIF Data Types

C3D_ERSID

Version
1.0

Syntax

typedef enum {
C3D_ERS_FG_CLR =0,
C3D_ERS_VERTEX_TYPE =1,
C3D_ERS_PRIM_TYPE =2,
C3D_ERS_SOLID_CLR =3,
C3D_ERS_SHADE_MODE =4,
C3D_ERS_TMAP_EN =5,
C3D_ERS_TMAP_SELECT =6,
C3D_ERS_TMAP_LIGHT =7,
C3D_ERS_TMAP_PERSP_COR =8,
C3D_ERS_TMAP_FILTER =9,
C3D_ERS_TMAP_TEXOP =10,
C3D_ERS_ALPHA_SRC =11,
C3D_ERS_ALPHA DST =12,
C3D_ERS_SURF_DRAW_PTR = 13,
C3D_ERS_SURF_DRAW_PITCH = 14,
C3D_ERS_SURF_DRAW_PF = 15,
C3D_ERS_SURF_VPORT = 16,
C3D_ERS_FOG_EN =17,
C3D_ERS_DITHER_EN = 18,
C3D_ERS_Z_CMP_FCN =19,
C3D_ERS_Z_MODE = 20,
C3D_ERS_SURF_Z PTR =21,
C3D_ERS_SURF_Z PITCH =22,
C3D_ERS_SURF_SCISSOR = 23,
C3D_ERS_COMPOSITE_EN = 24,
C3D_ERS_COMPOSITE_SELECT= 25,
C3D_ERS_COMPOSITE_FNC = 26,
C3D_ERS_COMPOSITE_FACTOR = 27,
C3D_ERS_COMPOSITE_FILTER = 28,
C3D_ERS_COMPOSITE_FACTOR_ALPHA = 29,
C3D_ERS_LOD_BIAS_LEVEL = 30,
C3D_ERS_ALPHA DST_TEST_ENABLE = 31,
C3D_ERS_ALPHA _DST_TEST_FNC = 32,
C3D_ERS_ALPHA DST_WRITE_SELECT = 33,
C3D_ERS_ALPHA DST_REFERENCE = 34,
C3D_ERS_SPECULAR_EN = 35,
C3D_ERS_NUM = 36,
C3D_ERS_FORCE_U32 = C3D_FORCE_SIZE

} C3D_ERSID, * C3D_PERSID;

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-34 Proprietary and Confidential

ATI3DCIF Data Types

Constants

C3D_ERS_FG_CLR
C3D_ERS_VERTEX_TYPE
C3D_ERS_PRIM_TYPE
C3D_ERS_SOLID_CLR
C3D_ERS_SHADE_MODE
C3D_ERS_TMAP_EN
C3D_ERS_TMAP_SELECT
C3D_ERS_TMAP_LIGHT
C3D_ERS_TMAP_PERSP_COR
C3D_ERS_TMAP_FILTER
C3D_ERS_TMAP_TEXOP
C3D_ERS_ALPHA_SRC
C3D_ERS_ALPHA DST
C3D_ERS_SURF_DRAW_PTR
C3D_ERS_SURF_DRAW_PITCH
C3D_ERS_SURF_DRAW_PF
C3D_ERS_SURF_VPORT
C3D_ERS_FOG_EN
C3D_ERS_DITHER_EN
C3D_ERS_Z_CMP_FNC
C3D_ERS_Z_MODE
C3D_ERS_SURF_Z_PTR
C3D_ERS_SURF_Z_PITCH
C3D_ERS_SURF_SCISSOR
C3D_ERS_COMPOSITE_EN

C3D_ERS_COMPOSITE_SELECT

C3D_ERS_COMPOSITE_FNC

C3D_ERS_COMPOSITE_FACTOR

C3D_ERS_COMPOSITE_FILTER

set fog color

set vertex structure type

set primitive type

set solid color

set primitive shading mode

enable or disable texture mapping
select texture map

set texture lighting method

set texture perspective correction level
set texture filtering method

set texture rendering operation

set source alpha blending factor

set destination alpha blending factor
set draw surface address

set draw surface pitch

set draw surface pixel format

set draw surface viewport coordinates
enable or disable fog

enable or disable dither

set Z compare function

set Z testing mode

set Z buffer address

set Z buffer pitch

set draw surface clipping coordinates
enable texture compositing

select secondary composite texture. Primary composite
texture is selected by C3D_ERS_TMAP_SELECT

select texture composite function
select blending factor for texture composite function
set texture filtering method for secondary composite texture

C3D_ERS_COMPOSITE_FACTOR_ALPHAforce blend factor for blend texture compositing function

C3D_ERS_LOD_BIAS_LEVEL

to be taken from composite texture’s alpha channel
set LOD bias for mipmap level switching

C3D_ERS_ALPHA_DST_TEST_ENABLE enable destination alpha testing

C3D_ERS_ALPHA DST_TEST_FNC

select destination alpha test compare function

C3D_ERS_ALPHA_DST_WRITE_SELECTelect destination alpha test alpha write source
C3D_ERS_ALPHA_DST_REFERENCE set destination alpha testing reference alpha

C3D_ERS_SPECULAR_EN
C3D_ERS_NUM

enable specular lighting
invalid enumeration

© 1997 ATI Technologies Inc.
Proprietary and Confidential

SDK-C02700 Rev. 1.30
5-35

ATI3DCIF Data Types

Description

This enumeration is used to specify the state to change when édalliBDCIF_ContextSetState

A valid C3D_ERSID constant must be passed as the eRStatelD argument to change the associated
state for the context referenced by hRC.

NOTE: z-buffers are only supported in the 3D RAGE Il graphics accelerator or later.

See Also
ATI3DCIF_ContextSetState

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-36 Proprietary and Confidential

ATI3DCIF Data Types

C3D ESHADE

Version
1.0

Syntax

typedef enum {

C3D_ESH_NONE =0,

C3D_ESH_SOLID =1,

C3D_ESH_FLAT =2,

C3D_ESH_SMOOTH = 3,

C3D_ESH_NUM =4,

C3D_ESH_FORCE_U32 = C3D_FORCE_SIZE
} C3D_ESHADE, * C3D_PESHADE;

Constants
C3D_ESH_NONE shading mode is undefined
C3D_ESH_SOLID primitives are shaded according to the rendering context solid color. On

context creation, this color is set to black. It may be modified by calling
ATI3DCIF_ContextSetState

C3D_ESH_FLAT primitives are flat shaded according to the color of the last vertex in
each triangle or quadrilateral in the primitive list or strip. The rendering
context vertex structure type must include r, g, b, and a color members.

C3D_ESH_SMOOTH primitives are Gouraud shaded according to the color of each vertex in
the triangle or quadrilateral in the primitive list or strip. The primitive
color is interpolated from one vertex to the other, resulting in a smooth
gradation over the entire primitive. The rendering context vertex
structure type must include r, g, b, and a color members.

C3D_ESH_NUM invalid enumeration

Description

C3D_ESHADE constants represent the primitive shading modes which may be set for the rendering
context. The default mode set on context creation is C3D_ESH_SMOOTH. To modify the shading
mode, callATI3DCIF_ContextSetStatith eRStatelD set to C3D_ERS_SHADE_MODE and
pRStateData set to the address of a C3D_ESHADE object specifying the new state.

If texture mapping is enabled and the texture lighting state is set to C3D_ETL_MODULATE, the
color of each texel will be modulated by the color of the primitive as defined by the shading mode.
Therefore, texels may be modulated by the solid, flat, or Gouraud shaded color of the primitive.

See Also
ATI3DCIF_ContextSetStgt€3D_ERSIDC3D_ETLIGHT

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-37

ATI3DCIF Data Types

C3D_ETEXCOMPFCN

Version
1.0

Syntax

typedef enum {
C3D_ETEXCOMPFCN_BLEND =0,
C3D_ETEXCOMPFCN_MOD =1,
C3D_ETEXCOMPFCN_MAX = 3,
C3D_ETEXCOMPFCN_FORCE_U32 = C3D_FORCE_SIZE
} C3D_ETEXCOMPFCN, * C3D_PETEXCOMPFCN;

Constants
C3D_ETEXCOMPFCN_BLEND composite texel = (primary texel x (1-(blend
factor/16))) + (secondary texel x blend factor/16)
C3D_ETEXCOMPFCN_MOD composite texel = primary texel x secondary texel
C3D_ETEXCOMPFCN_MAX invalid enumeration
Description

C3D_ETEXCOMPFCN constants specify the texture compositing function to use if texture
compositing is enabled. The default texture compositing function is set to
C3D_ETEXCOMPFCN_BLEND on context creation. For the blend compositing function
represented by C3D_ETEXCOMPFCN_BLEND, the blend factor must be an integer value
between 0 and 15, which is set by callkpl3DCIF_ContextSetStaweith the state flag
C3D_ERS_COMPOSITE_FACTOR and the state data set to the desired blend factor.

See Also
ATI3DCIF_ContextSetState

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.

5-38

Proprietary and Confidential

ATI3DCIF Data Types

C3D_ETEXFILTER

Version
1.0

Syntax

typedef enum {
C3D_ETFILT_MINPNT_MAGPNT =0,
C3D_ETFILT_ MINPNT_MAG2BY2 =1,
C3D_ETFILT_MIN2BY2_MAG2BY2 = 2,
C3D_ETFILT_MIPLIN_MAGPNT = 3,
C3D_ETFILT_MIPLIN_MAG2BY2 = 4,
C3D_ETFILT_MIPTRI_MAG2BY2 =5, /I (RAGE PRO)
C3D_ETFILT_MIN2BY2_MAGPNT = 6, Il (RAGE PRO
C3D_ETFILT_NUM =7,
C3D_ETFILT_FORCE_U32 = C3D_FORCE_SIZE

} C3D_ETEXFILTER, * C3D_PETEXFILTER;

Constants

C3D_ETFILT_MINPNT_MAGPNT pick-nearest on minification, pick-nearest on
magnification

C3D_ETFILT_MINPNT_MAG2BY2 pick-nearest on minification, bi-linear on magnification
C3D_ETFILT_MIN2BY2_MAG2BY2 bi-linear on minification, bi-linear on magnification

C3D_ETFILT_MIPLIN_MAGPNT mip-linear on minification, pick-nearest on
magnification

C3D_ETFILT_MIPLIN_MAG2BY2 mip-linear on minification, bi-linear on magnification
C3D_ETFILT_MIPTRI_MAG2BY2 tri-linear on minification, bi-linear on magnification

(RAGE PRO)

C3D_ETFILT_MIN2BY2_MAGPNT bilinear on minification, pick nearest on magnification
(RAGE PRO)

C3D_ETFILT _NUM invalid enumeration

Description

C3D_ETEXFILTER constants represent the texel filtering modes which may be set for the
rendering context. The default mode set on context creation is
C3D_ETFILT_MINPNT_MAG2BY2. This mode causes texels to be blended bi-linearly on
magnification, and selected by the pick-nearest criterion on minification.

To modify the texel filtering mode, callTI3DCIF_ContextSetStateith eRStatelD set to
C3D_ERS_TMAP_FILTER and pRStateData set to the address of a C3D_ETEXFILTER object
specifying the new state.

See Also
ATI3DCIF_ContextSetStgt€3D_ERSID

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-39

ATI3DCIF Data Types

C3D_ETEXFMT

Version
1.0

Syntax

typedef enum {

C3D_ETF_Cl4=1,

C3D_ETF_CI8 = 2,

C3D_ETF_RGB1555 = 3,

C3D_ETF_RGB565 = 4,

C3D_ETF_RGB8888 = 6,

C3D_ETF_RGB332 =7,

C3D_ETF_Y8 =8,

C3D_ETF_YUV422 =11,

C3D_ETF_RGB4444 = 15,

C3D_ETF_VQ = 20, Il (RAGE PRO)

C3D_ETF_FORCE_U32 = C3D_FORCE_SIZE
} C3D_ETEXFMT, * C3D_PETEXFMT;

Constants
C3D_ETF_Cl4 4 bpp index into palette (pseudo color)
C3D_ETF_CI8 8 bpp index into palette (pseudo color)

C3D_ETF_RGB1555
C3D_ETF_RGB565
C3D_ETF_RGB8888
C3D_ETF_RGB332
C3D_ETF_VY8
C3D_ETF_YUV422
C3D_ETF_RGB4444
C3D_ETF_VQ

1 bit alpha, 5 bits red, 5 bits green, 5 bits blue
0 bits alpha, 5 bits red, 6 bits green, 5 bits blue
8 bits alpha, 8 bits red, 8 bits green, 8 bits blue
0 bits alpha, 3 bits red, 3 bits green, 2 bits blue
8 bits Y

the pixel format is YUV 422 packed YUYV

4 bits alpha, 4 bits red, 4 bits green, 4 bits blue
VQ compressed texture

Description

C3D_ETEXFMT constants are used to specify a texture’s texel format in the eTexFormat member
of theC3D_TMAPstructure. This structure is used to provide texture information to the ATI3DCIF
module when registering a texture map.

NOTE: The C3D_ETF_Cl4 and C3D_ETF_CI8 formats are only available with the 3D RAGE Il
graphics accelerator or later. All other formats are available with the entire 3D RAGE accelerator
family.

See Also
ATI3DCIF_ContextSetState

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-40 Proprietary and Confidential

ATI3DCIF Data Types

C3D_ETEXOP

Version
1.0

Syntax

typedef enum {
C3D_ETEXOP_NONE =0,
C3D_ETEXOP_CHROMAKEY =1,
C3D_ETEXOP_ALPHA =2,
C3D_ETEXOP_ALPHA_MASK = 3,
C3D_ETEXOP_NUM = 4,
C3D_ETEXOP_FORCE_U32 = C3D_FORCE_SIZE

} C3D_ETEXOP, * C3D_PETEXOP;

Constants
C3D_ETEXOP_NONE all texels are rendered
C3D_ETEXOP_CHROMAKEY texels are not rendered if equal to the chroma key color
C3D_ETEXOP_ALPHA texels are alpha blended by passing the texel alpha to the

alpha blender

C3D_ETEXOP_ALPHA_MASK texels are not rendered if the least significant bit in the alpha
channel is set to O

C3D_ETEXOP_NUM invalid enumeration

Description

C3D_ETEXOP constants represent the texel rendering operations which may be performed during
texture mapping. The default mode set on context creation is C3D_ETEXOP_NONE. Texel
operations include texel transparency based on chroma keying or alpha masking, and alpha
blending using the texel alpha channel.

To modify the texel render operation, callI3DCIF_ContextSetStateith eRStatelD set to
C3D_ERS_TMAP_TEXOP and pRStateData set to the address of a C3D_ETEXOP object
specifying the new state.

See Also
ATI3DCIF_ContextSetStgt€3D_ERSID

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-41

ATI3DCIF Data Types

C3D_ETLIGHT

Version
1.0

Syntax

typedef enum {
C3D_ETL_NONE =0,
C3D_ETL_MODULATE =1,
C3D_ETL_ALPHA_DECAL =2,
C3D_ETL_NUM = 3,
C3D_ETL_FORCE_U32 = C3D_FORCE_SIZE
} C3D_ETLIGHT, * C3D_PETLIGHT;

Constants
C3D_ETL_NONE texel colors are not modulated
C3D_ETL_MODULATE texel colors are modulated according to the shading mode. If the

shading mode is C3D_ERS_FLAT or C3D_ERS_SMOOTH,
texel colors are modulated by the color of the primitives in flat
or Gouraud shading, respectively. If the shading mode is
C3D_ERS_SOLID, texel colors are modulated according to the
rendering context solid color.

C3D_ETL_ALPHA_DECAL texel colors are modulated by a combination of the primitive
shading color and an alpha value supplied in the texture map.
The texel value becomes (texel cataexel alpha) + (primitive
colorx (1 - texel alpha)), where the primitive color is determined
by the shading mode.

C3D_ETL_NUM invalid enumeration

Description

C3D_ETLIGHT constants represent the texture lighting modes which may be set for the rendering
context. The default mode set on context creation is C3D_ETL_NONE. To modify the texture
lighting mode, calATI3DCIF_ContextSetStateith eRStatelD set to C3D_ERS_TMAP_LIGHT

and pRStateData set to the address of a C3D_ETLIGHT object specifying the new state.

If the texture lighting method is set to C3D_ETL_MODULATE, the color of each texel will be
modulated by the color of the primitive as defined by the shading mode. Therefore, texels will be
modulated by the solid, flat, or Gouraud shaded color of the primitive. Shading modes are defined
by theC3D_ESHADEenumeration constants.

See Also
ATI3DCIF_ContextSetStat€3D ERSIDC3D_ESHADE

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-42 Proprietary and Confidential

ATI3DCIF Data Types

C3D_ETPERSPCOR

Version
1.0
Syntax

typedef enum {
C3D_ETPC_NONE =0,
C3D_ETPC_ONE =1,
C3D_ETPC_TWO =2,
C3D_ETPC_THREE = 3,
C3D_ETPC_FOUR =4,
C3D_ETPC_FIVE =5,
C3D_ETPC_SIX =6,
C3D_ETPC_SEVEN =7,
C3D_ETPC_EIGHT =8,
C3D_ETPC_NINE =9,
C3D_ETPC_NUM = 10,
C3D_ETPC_FORCE_U32 = C3D_FORCE_SIZE
} C3D_ETPERSPCOR, * C3D_PETPERSPCOR,;

Constants
C3D_ETPC_NONE no perspective correction
C3D_ETPC_ONE level one perspective correction
C3D_ETPC_TWO level two perspective correction
C3D_ETPC_THREE level three perspective correction
C3D_ETPC_FOUR level four perspective correction
C3D_ETPC_FIVE level five perspective correction
C3D_ETPC_SIX level six perspective correction
C3D_ETPC_SEVEN level seven perspective correction
C3D_ETPC_EIGHT level eight perspective correction
C3D_ETPC_NINE level nine perspective correction
C3D_ETPC_NUM invalid enumeration

Description

C3D_ETPERSPCOR constants represent the texture perspective correction levels which may be set
for the rendering context. The default mode set on context creationis C3D_ETL_NONE. To modify
the perspective correction level, callI3DCIF_ContextSetStateith eRStatelD set to
C3D_ERS_TMAP_ PERSP_COR and pRStateData set to the address of a C3D_ETPERSPCOR
object specifying the new state.

Texture perspective correction produces better image quality. However, this comes at the expense of
frame rate. The frame rate will vary inversely to the level of perspective correction set. Level
C3D_ETPC_NONE will offer no correction but the fastest frame rate, whereas level
C3D_ETPC_NINE will offer full correction but the poorest frame rate. The recommended level which
offers the best compromise is level C3D_ETPC_THREE. For a full discussion of performance and
image quality issues, s€hapter 6 3D RAGE / ATI3DCIF Porting and Performance Notes

See Also
ATI3DCIF_ContextSetStagt€3D_ERSIDC3D ESHADE

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-43

ATI3DCIF Data Types

C3D_EVERTEX

Version
1.0

Syntax

typedef enum {
C3D_EV_VF =0,
C3D_EV_VCF =1,
C3D_EV_VTF =2,
C3D_EV_VTCF =3,
C3D_EV_TLVERTEX =4, /I (RAGE PRO)
C3D_EV_NUM =5,
C3D_EV_FORCE_U32 = C3D_FORCE_SIZE
} C3D_EVERTEX, * C3D_PEVERTEX;

Constants
C3D_EV_VF vertex defined by C3D_VF structure
C3D_EV_VCF vertex defined by C3D_VCF structure
C3D_EV_VTF vertex defined by C3D_VTF structure
C3D_EV_VTCF vertex defined by C3D_VTCF structure
C3D_EV_TLVERTEX vertex defined by C3D_TLVERTEX structure (RAGE PRO)
C3D_EV_NUM invalid enumeration

Description

C3D_EVERTEX constants represent the vertex structures which may represent vertex data within
the rendering context. The default mode set on context creation is C3D_EV_VTCF. To modify the
vertex structure type, calTI3DCIF_ContextSetStateith eRStatelD set to
C3D_ERS_VERTEX_TYPE and pRStateData set to the address of a C3D_EVERTEX object
specifying the new state.

All vertex structures contain X, y, and z location coordinate members. Vertex structures with a C in
the structure name also contain r, g, b, and a color component members. Vertex structures witha T
in the structure name contain s, t, and w texture coordinate members. All vertex structures represent
data in floating point format.

To perform flat or Gouraud shading and source or destination alpha blending, the vertex structure
must containr, g, b, and a members. To perform texture mapping, the vertex structure must contain
s, tand w members (or tu and tv if using the C3D_TLVERTEX structure). To modulate texel colors,
the vertex structure must contain both color r, g, b, and a members and texture s, t, and w members
(or tu and tv if using the C3D_TLVERTEX structure).

See Also
ATI3DCIF_ContextSetState

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-44 Proprietary and Confidential

ATI3DCIF Data Types

C3D EZCMP

Version
1.0

Syntax

typedef enum {
C3D_EZCMP_NEVER =0,
C3D_EZCMP_LESS =1,
C3D_EZCMP_LEQUAL = 2,
C3D_EZCMP_EQUAL = 3,
C3D_EZCMP_GEQUAL = 4,
C3D_EZCMP_GREATER =5,
C3D_EZCMP_NOTEQUAL = 6,
C3D_EZCMP_ALWAYS =7,
C3D_EZCMP_MAX = 8,
C3D_EZCMP_FORCE_U32 = C3D_FORCE_SIZE

} C3D_EZCMP, * C3D_PEZCMP;

Constants
C3D_EZCMP_NEVER Z compare never passes
C3D_EZCMP_LESS Z compare passes if test z is less than buffered z
C3D_EZCMP_LEQUAL Z compare passes if test z is less than or equal to buffered z
C3D_EZCMP_EQUAL Z compare passes if test z is equal to buffered z

C3D_EZCMP_GEQUAL Z compare passes if test z is greater than or equal to buffered z
C3D_EZCMP_GREATER Z compare passes if test z is greater than buffered z
C3D_EZCMP_NOTEQUAL Z compare passes if test z is not equal to buffered z
C3D_EZCMP_ALWAYS Z compare always passes

C3D_EZCMP_MAX invalid enumeration

Description

C3D_EZCMP constants specify what kind of Z compare function to use during z-buffer testing. The
default Z compare function is set to C3D_EZCMP_ALWAYS on context creation. The compare
function performs a logical operation to select or reject a pixel for rendering.

NOTE: z-buffers are only supported in the 3D RAGE Il graphics accelerator or later.

See Also

None.

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-45

ATI3DCIF Data Types

C3D EZMODE

Version
1.0

Syntax

typedef enum {
C3D_EZMODE_OFF =0,
C3D_EZMODE_TESTON =1,
C3D_EZMODE_TESTON_WRITEZ = 2,
C3D_EZMODE_MAX = 3,
C3D_EZMODE_FORCE_U32 = C3D_FORCE_SIZE
} C3D_EZMODE, * C3D_PEZMODE;

Constants
C3D_EZMODE_OFF Disable Z testing
C3D_EZMODE_TESTON Test Z, do not update the z-buffer
C3D_EZMODE_TESTON_WRITEZ Test Z, update the z-buffer
C3D_EZMODE_MAX invalid enumeration

Description

C3D_EZMODE constants specify the state of z-buffer testing. The default z-buffer testing mode is
set to C3D_EZMODE_OFF on context creation. Z-buffer testing can be disabled, set to test Z and
update the z-buffer, or set to test Z and not modify the z-buffer.

NOTE: z-buffers are only supported in the 3D RAGE Il graphics accelerator or later.

See Also

None.

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-46 Proprietary and Confidential

ATI3DCIF Data Types

C3D HRC

Version
1.0

Syntax
typedef void* C3D_HRC;

Description

This handle identifies an ATI3DCIF rendering context created by calling
ATI3DCIF_ContextCreaterlhis handle must be used to reference the rendering context when
calling the following functions:

ATI3DCIF_ContextDestroy

ATI3DCIF_ContextSetState

ATI3DCIF_RenderBegin

ATI3DCIF_RenderSwitch

See Also

ATI3DCIF_ContextDestrg\ATI3DCIF_ContextSetStatATI3DCIF_RenderBegin
ATI3DCIF_RenderSwitch

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-47

ATI3DCIF Data Types

C3D HTX

Version
1.0

Syntax

typedef void * C3D_HTX;
typedef C3D_HTX * C3D_PHTX;

Description

This handle identifies a texture map registered with the ATISBDCIF module. The handle is obtained
by callingATISDCIF_TextureRewith a pointer to £3D_TMAPstructure describing the texture’s
attributes. To use the texture map, an application must select it by calling
ATI3DCIF_ContextSetStateith eRStatelD set to C3D_ERS_TMAP_SELECT and pRStateData
set to the address of its C3D_HTX handle.

See Also
ATI3DCIF_TextureReATI3DCIF_ContextSetStgt€3D_TMAP

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-48 Proprietary and Confidential

ATI3DCIF Data Types

C3D_HTXPAL

Version
1.0

Syntax

typedef void * C3D_HTXPAL,;
typedef C3D_HTXPAL *C3D_PHTXPAL;

Description

This handle identifies a logical texture palette created internally within ATI3DCIF. Palettes
associated with CI8 or Cl4 textures must be created and then assigned to the textures in the
htxpalTexPalette member of tk8D_TMAPstructure before the textures are registered. The
handle is obtained by callimgTI3DCIF_TexturePaletteCreate

NOTE: Texture palettes, C3D_ETF_CI4, and C3D_ETF_CI8 texel formats are only available with
the 3D RAGE Il graphics accelerator or later. All other formats are available with the entire
3D RAGE accelerator family.

See Also
ATI3DCIF TexturePaletteCreat€3D_ TMAP

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-49

ATI3DCIF Data Types

C3D_PALETTENTRY

Version
1.0

Syntax

typedef union {
struct {
unsigned r: 8;
unsigned g: 8;
unsigned b: 8;
unsigned flags: 8;
I
C3D_UINT32 u32All,
} C3D_PALETTENTRY , * C3D_PPALETTENTRY;

Members

r 8 bit red color component

g 8 bit green color component

b 8 bit blue color component

flags flag controlling palette entry loading
Description

This structure is used to specify the color values of palette entries when creating a texture palette
with ATI3DCIF_TexturePaletteCreat®/hen creating a palette for a CI8 texture, a 256 element
C3D_PALETTENTRY array is used to specify the palette colors. When creating a palette for a Cl4
texture, a 16 element C3D_PALETTENTRY array is used to specify the palette colors. r, g, and b
specify the 8 bit RGB color components of each palette entry. flags control the loading of individual
entries in the palette. If flags is set to C3D_LOAD_PALETTE_ENTRY, the physical palette entry
corresponding to the C3D_PALETTENTRY element in the array will be replaced with the specified
color. If flags is set to C3D_NO_LOAD_PALETTE_ENTRY, the physical palette entry will not be
modified.

NOTE: Texture palettes, C3D_ETF_CI4, and C3D_ETF_CI8 texel formats are only available with
the 3D RAGE Il graphics accelerator or later. All other formats are available with the entire
3D RAGE accelerator family.

See Also

ATI3DCIF_TexturePaletteCreate

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-50 Proprietary and Confidential

ATI3DCIF Data Types

C3D_PRSDATA

Version
1.0

Syntax
typedef void* C3D_PRSDATA,

Description
The C3D_PRSDATA type is used in the funct®hl3DCIF_ContextSetState specify the
address of the data object containing the new state data to set.

See Also
ATI3DCIF_ContextSetState

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-51

ATI3DCIF Data Types

C3D RECT

Version
1.0

Syntax

typedef struct {
C3D_INT32 top;
C3D_INT32 left;
C3D_INT32 bottom;
C3D_INT32 right;

} C3D_RECT, * C3D_PRECT,

Members
top y coordinate of the upper left corner of the rectangle
left x coordinate of the upper left corner of the rectangle
bottom y coordinate of the bottom right corner of the rectangle
right x coordinate of the bottom right corner of the rectangle
Description

This structure defines the upper left and bottom right corners of a rectangular region. It is used to
pass the rectangular viewport coordinates tARBDCIF_ContextSetStafenction when setting

the viewport region of the drawing surface. Primitives are clipped to the bounds of the viewport
region when rendered.

See Also
ATI3DCIF_ContextSetState

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-52 Proprietary and Confidential

ATI3DCIF Data Types

C3D_TLVERTEX

Version
1.0

Syntax

typedef struct {
union {
C3D_FLOAT32 sx;
C3D_FLOAT32 x;

¥
union {
C3D_FLOATS32 sy;
C3D_FLOAT32Yy;
¥
union {
C3D_FLOAT32 sz;
C3D_FLOAT32 z;
%
union {
C3D_FLOAT32 rhw;
C3D_FLOAT32 w;
2
union {
C3D_UINT32 color;
struct {
C3D_UINTS8 b;
C3D_UINTS8 g;
C3D_UINTS8 r;
C3D_UINTS8 a;
%
%
union {
C3D_UINT32 specular;
struct {
C3D_UINTS8 spec_b;
C3D_UINT8 spec_g;
C3D_UINT8 spec_r;
C3D_UINT8 spec_a;
2
h
union {
C3D_FLOAT32 tu;
C3D_FLOAT32s;
3
union {
C3D_FLOAT32 tv;
C3D_FLOAT32 t;
%
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30

Proprietary and Confidential 5-53

ATI3DCIF Data Types

struct {
C3D_FLOAT32 reservedl;
C3D_FLOAT32 reservedz;
C3D_FLOAT32 reserved3;
} composite;
} C3D_TLVERTEX;

Members
SX vertex x coordinate
sy vertex y coordinate
sz vertex z coordinate
rhw reciprocal of the homogeneous vertex w coordinate
color vertex diffuse color
specular vertex specular color
tu non-homogeneous texture u coordinate
tv non-homogeneous texture v coordinate
reserved reserved for future use

Description

This structure may be used to describe a vertex in terms of its screen location coordinates, its u and
v texture coordinatesy andtv, and its diffuse and specular color components. If the rendering
context uses this structure to represent vertices, flat or Gouraud shading, source or destination alpha
blending, texture mapping and texel modulation can be performed. This structure represents color
data members in unsigned format, all other data members are floating point. This structure is highly
portable and is intended to replace older vertex types, although the C3D_VTCF vertex type will
continue to be supported.

The tu and tv members of this structure represent non-homogenous u,v texture coordinates. That is
s and t are derived from u and v as: s =u/w and t = v/w.

The default vertex type used to represent vertex data on context creation is C3D_VTCF. To modify
the vertex structure type to use C3D_TLVERTEX, A3lISDCIF_ContextSetStavath eRStatelD

setto C3D_ERS_VERTEX_TYPE and pRStateData set to the address2ibakVERTEXbject
containing C3D_EV_TLVERTEX.

See Also
ATI3DCIF _ContextSetStagt€3D _ERSIDC3D _EVERTEXC3D _VTCF

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-54 Proprietary and Confidential

ATI3DCIF Data Types

C3D_TMAP

Version
1.0

Syntax

typedef struct {
C3D_UINT32 u32Size;
BOOL bMipMap;
C3D_PVOID apvLevels [cu32MAX_TMAP_LEV];
C3D_UINT32 u32MaxMapXSizelLgz;
C3D_UINT32 u32MaxMapY SizelLg2;
C3D_ETEXFMT eTexFormat;
C3D_COLOR cIrTexChromaKey;
C3D_HTXPAL htxpalTexPalette;
C3D_BOOL_bClamps; Il (RAGE PRO)
C3D_BOOL_bClampT,; /l (RAGE PRO)
C3D_BOOL_bAlphaBlend; // (RAGE PRO)
C3D_ETEXTILEeTexTiling; // (RAGE PRO)
} C3D_TMAP, * C3D_PTMAP;

Members
u32Size size of C3D_TMAP structure
bMipMap mip map enable flag
apvlLevels array of pointers to individual maps which compose a mip map texture

u32MaxMapXSizelLg2 the log 2 x-axis size of largest map
u32MaxMapYSizelLg2 the log 2 y-axis size of largest map

eTexFormat texel format

clrTexChromaKey texel transparency chroma key color

htxpalTexPalette handle to texture palette

bClampS smear/repeat s=1 if s>1 (RAGE PRO)

bClampT smear/repeat t=1 if t>1 (RAGE PRO)

bAlphaBlend use this texture’s alpha as blend factor for the blend compaositing factor
(RAGE PRO)

eTexTiling texture minimized for local reference (RAGE PRO)

Description

The C3D_TMAP structure is used to provide information describing a texture map to the
ATI3DCIF module when registering the texture with the funcAdh3DCIF_TextureRedrhis
information specifies how the hardware should interpret the texture cached in the frame buffer.

u32Size specifies the size of the C3D_TMAP structure. The client application must set this member

to the size of the C3D_TMAP structure prior to callkigi3DCIF_TextureRegbMipMap set to

TRUE signals that the texture is a mip map. If this is the case, the first element in the apvLevels array
contains the address of the base map in the frame buffer, and subsequent elements contain the addres:

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-55

ATI3DCIF Data Types

of sequentially smaller maps. If bMipMap is FALSE, the first element contains the address of the
texture map and the rest are ignored. The height and width of the texture maps must be in powers of
2 (e.g. 2,4, 8, etc.) to a maximum of 1024 lines or pixels. u32MaxMapXSizelLg2 specifies the base 2
log of the width of the texture or the largest map in a mip map. u32MaxMapYSizelLg2 specifies the
base 2 log of the height of the largest map. clrTexChromaKey specifies the transparency chroma key
color. htxpalTexPalette is the handle to the texture’s palette if the texture format is C3D_ETF_CI4
or C3D_ETF_CI8. The texture palette must have been created beforehand by calling
ATI3DCIF_TexturePaletteCreate

NOTE: Texture palettes, C3D_ETF_CI4, and C3D_ETF_CI8 texel formats are only available with
the 3D RAGE Il graphics accelerator or later. All other formats are available with the entire
3D RAGE accelerator family.

See Also
ATI3DCIF_TextureReg

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-56 Proprietary and Confidential

ATI3DCIF Data Types

C3D_VCF

Version
1.0

Syntax

typedef struct {
C3D_FLOAT32 x;
C3D_FLOAT32Yy;
C3D_FLOAT32 z;
C3D_FLOAT32r;
C3D_FLOAT32 g;
C3D_FLOAT32 b;
C3D_FLOAT32 a;

} C3D_VCF, * C3D_PVCF;

Members
X vertex x coordinate
y vertex y coordinate
z vertex z coordinate

-

vertex red color component

g vertex green color component

b vertex blue color component

a vertex alpha value
Description

This structure may be used to describe a vertex in terms of its X, y, and z location coordinates and
its r, g, b, and a color components. Because this structure does not contain texture coordinate
members (s, t, and w), texture mapping cannot be performed if the rendering context uses this
structure to represent vertices. This structure represents data members in floating point format.

The default vertex structure type set on context creation is C3D_VTCF. To modify the vertex

structure type, caATI3DCIF_ContextSetStatgth eRStatelD setto C3D_ERS_VERTEX_TYPE

and pRStateData set to the address @320 EVERTE>Object with the value C3D_EV_VCF.
See Also

ATI3DCIF_ContextSetStat€3D_ERSIDC3D_EVERTEX

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-57

ATI3DCIF Data Types

C3D VF

Version
1.0

Syntax

typedef struct {
C3D_FLOAT32 x;
C3D_FLOAT32Yy;
C3D_FLOAT32 z;

} C3D_VF, * C3D_PVF,;

Members

X vertex x coordinate
y vertex y coordinate
z vertex z coordinate

Description

This structure may be used to describe a vertex in terms of its X, y, and z location coordinates.
Because this structure does not contain color component members (r, g, b, and a) and texture
coordinate members (s, t, and w), flat or Gouraud shading, source or destination alpha blending, and
texture mapping cannot be performed if the rendering context uses this structure to represent
vertices. This structure represents data members in floating point format.

The default vertex structure type set on context creatiG3 VTCE To modify the vertex

structure type, calATISDCIF_ContextSetStavtath eRStatelD setto C3D_ERS_VERTEX_TYPE

and pRStateData set to the address @320 EVERTE)Object with the value C3D_EV_VF.
See Also

ATI3DCIF_ContextSetStat€3D_ERSIDC3D_EVERTEX

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-58 Proprietary and Confidential

ATI3DCIF Data Types

C3D_VLIST

Version
1.0

Syntax
typedef void ** C3D_VLIST,;

Description
The C3D_VLIST type is used in the functiéiI3DCIF_RenderPrimLisio specify the array of
pointers to the vertex structures representing the vertices in the primitive list.

See Also
ATI3DCIF_RenderPrimList

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-59

ATI3DCIF Data Types

C3D VSTRIP

Version
1.0

Syntax
typedef void * C3D_VSTRIP;

Description
The C3D_VSTRIP type is used in the funct®hl3DCIF_RenderPrimStripo specify the array of
vertex structures representing the vertices in the primitive strip.

See Also
ATI3DCIF_RenderPrimStrip

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-60 Proprietary and Confidential

ATI3DCIF Data Types

C3D VTCF

Version
1.0

Syntax

typedef struct {
C3D_FLOAT32 x;
C3D_FLOAT32Yy;
C3D_FLOAT32 z;
C3D_FLOAT32 s;
C3D_FLOAT32t;
C3D_FLOAT32 w;
C3D_FLOAT32r;
C3D_FLOAT32 g;
C3D_FLOAT32 b;
C3D_FLOAT32 a;

} C3D_VTCF, * C3D_PVTCF;

Members
X vertex x coordinate
y vertex y coordinate
z vertex z coordinate
s vertex s texture coordinate
t vertex t texture coordinate
w vertex w texture coordinate
r vertex red color component
g vertex green color component
b vertex blue color component
a vertex alpha value
Description

This structure may be used to describe a vertex in terms of its x, y, and z location coordinates, its s,
t, and w texture coordinates and its r, g, b, and a color components. If the rendering context uses this
structure to represent vertices, flat or Gouraud shading, source or destination alpha blending, texture
mapping and texel modulation can be performed. This structure represents data members in floating
point format.

This structure is the default used to represent vertex data on context creation. To modify the vertex
structure type, caATI3DCIF_ContextSetStatgth eRStatelD setto C3D_ERS_VERTEX_TYPE

and pRStateData set to the address @32iD_EVERTE)object containing the new vertex type’s
enumeration constant.

See Also
ATI3DCIF_ContextSetStagt€3D ERSIDC3D _EVERTEX

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-61

ATI3DCIF Data Types

C3D_VTF

Version
1.0

Syntax

typedef struct {
C3D_FLOAT32 x;
C3D_FLOAT32Yy;
C3D_FLOAT32 z;
C3D_FLOAT32 s;
C3D_FLOAT32t;
C3D_FLOAT32 w;

} C3D_VTF, * C3D_PVTF,;

Members
X vertex x coordinate
y vertex y coordinate
z vertex z coordinate
s vertex s texture coordinate
t vertex t texture coordinate
w vertex w texture coordinate
Description

This structure may be used to describe a vertex in terms of its X, y, and z location coordinates and
its s, t, and w texture coordinates. Because this structure does not contain color component members
(r, g, b, and a), flat or Gouraud shading, source or destination alpha blending, and texel modulation
cannot be performed if the rendering context uses this structure to represent vertices. This structure
represents data members in floating point format.

The default vertex structure type set on context creatiG3 VTCE To modify the vertex
structure type, calATISDCIF_ContextSetStavath eRStatelD setto C3D_ERS_VERTEX_TYPE
and pRStateData set to the address @32l EVERTE>Object with the value C3D_EV_VTF.

See Also
ATI3DCIF_ContextSetStgt€3D_ERSIDC3D _EVERTEX

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-62 Proprietary and Confidential

Introduction

The ATI 3D RAGE is a very powerful 3D rendering chip with advanced capabilities including:

e Gouraud Shading

» Perspective Correct Texture Mapping
» Texture Lighting

* Texture Filtering

» Interpolated Alpha Blending

* Interpolated Fog

The ATI3DCIF interface is provided for low-level access to this functionality under Windows 95.

While all of these features are available on the 3D RAGE chip, some features run faster than others for
a variety of reasons, including the number of reads and writes of pixel and texel data per pixel rendered
and the number of registers that must be set up per polygon operation. For this reason, a step by step
approach to porting a game or other application to the ATI3DCIF will result in the best combination of
high frame rate performance and superior image quality.

Triangle Size, Performance and Image Quality

In a nutshell, the larger the triangle being rendered, the more benefit will be realized from the use of 3D
RAGE’s hardware acceleration, since the driver time to setup the hardware is amortized across more
pixels drawn by the hardware, allowing better parallelism of driver software and hardware drawing. For
Gouraud shading, the benefit threshold is at about 10 pixels per triangle and for textured rendering the
benefit threshold is at about 30 pixels per triangle. The term “benefit threshold” refers to the first point
at which the time taken to send the triangle to the hardware is less than the time to render the triangle
directly in software.

Having set a benefit threshold strictly by performance, it has to be remembered that there is a second very
important benefit to using the 3D RAGE hardware: image quality. Use of texture filtering and
mipmapping, modulation, alpha blending and fog allow new levels of image quality in games that cannot
be achieved in software rendering at acceptable frame rates due to the large numbers of arithmetic and
logical operations required per pixel. Another way of thinking about the higher image quality is that it
effectively reduces the benefit threshold, since it would take software considerably longer to achieve
these quality levels.

Porting Backgrounds and Scenery

The first place to expect a huge improvement in both performance and image quality is in drawing
backgrounds and scenery. These items are often composed of large or very large polygons that leverage
the hardware very efficiently. If your game is partitioned for rendering and control into backgrounds and

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 6-1

Game Objects

objects, a good porting strategy is to begin by accelerating the backgrounds first.

e Turn on Gouraud shading or a texture map for the sky
« Turn on texture maps for mountains, trees, walls, and other sceneries as the game requires
» Use simple pick nearest texturing to begin with and measure the frame rate

Now experiment with more advanced features and check the effect on frame rate at each step:

e Turn on texture lighting (Modulation recommended over Alpha Decal)

e Turn on mipmapping if you have mipmapped textures available

e Turn on bilinear texture filtering

* Turn on interpolated Alpha Blending or Fog for transparency and mist effects

» Try other features of interest, such as texture compositing or specular highlighting

In conducting these experiments you will find:

» Texture lighting radically improves realism

* Mipmapping has a very small frame rate impact (<10%) and eliminates texture aliasing

» Bilinear Filtering has a frame rate impact of around 20% and eliminates the nasty “Blocky Pixel”
effect that occurs when you approach close to a textured surface. Bilinear filtering also removes
texture aliasing for distant texels and can be used alone or in combination with mipmapping.
Experiment for best effects.

* Use of alpha blending and fog allow scenery items to approach gradually and realistically
through the Yon (far) clipping plane, rather than just popping up.

» Use of Fog runs faster than Alpha Blending, but uses a constant color for the fog rather than a
pre-rendered backdrop.

Game Objects

Once you are satisfied with the background effects and frame rate, it is time to experiment with game
objects. In general, these will be smaller models with more polygons and fewer pixels per polygon. The
more highly tessellated the game figures are, the less benefit to be had from hardware acceleration.
However, since high quality textured rendering modes are now available in hardware, it may be worth
experimenting with fewer polygons per model and using texture mapping effects to compensate for the
use of fewer polygons. Additional performance improvements will be realized by optimizing object and
polygon culling prior to setting up polygon/primitive drawing lists. This will result in fewer writes to the
frame buffer and z-buffer. Another way to reduce writes is to render front-to-back to avoid overdraw and
is especially important when z-buffering (see note belovArtditional Tips for Improving

Performanc®).

In general the recommendations for accelerating game objects are:

» avoid use of highly tessellated objects

* avoid excessive overdraw

* turn on minimal acceleration (gouraud and pick nearest) and measure frame rate
* turn on higher quality rendering features and measure again

If as a result of these experiments you decide to employ a mix of hardware and software rendering,
remember to never mix hardware and software rendering within a meshed object. A meshed object must
always be rendered in its entirety through a consistent process (hardware or software) to ensure continuity
of color at boundaries and to ensure that all pixels at boundaries are rendered correctly.

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
6-2 Proprietary and Confidential

Concurrency and Software Overhead

Concurrency and Software Overhead

The amount of concurrency between the 3D RAGE accelerator and the CPU depends on the size of the
primitives being rendered. For small primitives, the 3D RAGE can render faster than the CPU can send
instructions over the bus. In this case, itis more advantageous to dispatch a series of primitives to the hardware
in asingle list or strip, thatis, in a sSin@l€I3DCIF_RenderPrimLisar ATISBDCIF_RenderPrimStripall.

The software overhead associated with the call is amortized over several primitives.

For large primitives, more concurrency is achieved by sending primitives to the hardware in smaller lists
or strips. The ATI3SBDCIF_RenderPrimList and ATI3DCIF_RenderPrimStrip functions queue the
primitives and do not return until the last one has been set up for rendering. Given a large primitive, these
functions can return before the 3D RAGE completes rendering. The CPU can take advantage of this time
to perform additional calculations. Thus by rendering smaller lists or strips, more time will be available
in between rendering calls for concurrent CPU operations.

Using the RAGE’s 2D Engine

Some primitives can be rendered faster using 2D rather than 3D operations. For example, a solid rectangle
to clear the back buffer may be drawn faster by performing a 2D rectangle fill rather than rendering two
triangles or one quadrilateral in 3D using solid or flat shading. Blitting a rectangular background bitmap

is faster than mapping it as a texture onto a rectangle which covers the same area if no scaling is required.
If scaling is required, the bitmap may first be texture mapped onto a rectangle in off-screen memory, and
then blitted to the destination in 2D. There are two advantages to using this method: (1) the application
can enhance or add special effects to the bitmap by applying bi-linear filtering or alpha blending while
mapping it as a texture, and (2) if the bitmap will be repeatedly blitted without being altered over several
frames, these additional enhancements will only have been done once.

Under certain circumstances, blitting the back buffer to the primary buffer may be faster than page
flipping due to the vertical blank synchronization delay in the flipping method. This is dependent on
several factors, such as the amount of time required by the game to perform game logic between frames,
and the resolution of the screen. Blitting will more likely be faster for smaller resolutions such as
320x240, 400x300, or possibly 512x384. With increasing resolution, the number of pixels to transfer
increases, and blitting becomes less effective relative to page flipping. It is recommended that the
developers experiment with both the page flipping and blitting methods to determine which offers the
best results. In general, blitting will work without introducing noticeable flicker if the frame rate of the
application is less then half the vertical refresh rate of the monitor. This method is particularly useful for
games that only update a portion of the screen (for example, games which have static cockpit or
dashboard consoles which frame the 3D scene).

Under Windows 95, 2D operations may be performed using DirectDraw. Note, however, that the
ATI3DCIF driver interface does not require DirectDraw as its surface management layer; any valid
surface pointer may be used. If DirectDraw is chosen as the surface management layer, page flipping may
be used only in full-screen applications, while blitting must be used for windowed application (although

it is rumored that DirectDraw will soon support windowed page flipping).

Additional Tips for Improving Performance

» Whenever possible, arrange primitives into strips. Although more complex to setup, strips use
less vertices to compose objects than lists. Consequently, there is less vertex setup overhead.

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 6-3

Summary

* When Z buffering, render primitives from front to back and use a Z compare function that
maximizes pixel rejection according to the direction Z increases. For example, if Z increases
from front to back, use a less-than or less-than-equal compare while rendering primitives from
front to back. If Z increases towards the front plane, use a greater-than or greater-than-equal Z
compare function. Rendering from back to front may cause pixels to trivially pass the Z compare
test, resulting in unnecessary overdraw.

» Eliminate triangles that do not cover a pixel center, that is, triangles whose area is zero or close
to zero. Such triangles will not be drawn, but will still incur overhead due to the setup of their
vertices.

* Try keeping texture coordinates less than or equal to 10.0. Larger numbers require additional
processing by the ATI3DCIF driver.

Summary

A step by step approach to porting a game to the 3D RAGE as suggested above will allow the discovery
of the best mix of image quality and fast frame rate. This may be more painstaking than a simple
“recompile and run” approach, but will allow the engineer doing the porting to get a real feel for the
cost/benefit of each of the 3D RAGE features and find an optimal mix.

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
6-4 Proprietary and Confidential

	Table of Contents
	Preface
	ATI Company Background
	ATI Developer Support

	Introduction
	3D RAGE PRO
	Manual Contents
	SDK System Requirements

	Chapter 1
	Overview
	Introduction
	3D Drawing Operations
	Texture Mapper
	Shader
	Alpha Blender

	Chapter 2
	Programming with ATI3DCIF
	Basic ATI3DCIF Operations
	Initializing ATI3DCIF
	Creating a Rendering Context
	Rendering 3D Primitives
	Modifying the Rendering Context
	Getting ATI3DCIF Module and Graphics Subsystem Inf...

	ATI3DCIF Primitive Types
	Vertex Data Formats
	Shading Modes
	Texture Mapping
	Registering a Texture
	Applying a Texture
	Unregistering a Texture
	Setting Texture Filtering, Lighting, and Perspecti...
	Transparent Texture Mapping
	Texture Coordinates

	Alpha Blending
	Applying Fog
	ATI3DCIF Viewport
	ATI3DCIF Clipping Scissors

	Chapter 3
	3D�RAGE�II ATI3DCIF Programming
	Introduction
	Determining ATI3DCIF Capabilities
	Palettized Textures
	Z Buffers

	Chapter 4
	RAGE�PRO ATI3DCIF Programming
	Introduction
	Determining Capabilities
	Texture Compositing
	Blend
	Modulation
	Specular-Addition

	Texture Clamping
	LOD Biasing
	Specular Lighting
	Destination Alpha Testing
	Vector Quantization (VQ) Compression
	TL Vertex Type (C3D_TLVERTEX)

	Chapter 5
	ATI3DCIF API Reference
	Introduction
	Windows 95 Functions
	ATI3DCIF_ContextCreate
	ATI3DCIF_ContextDestroy
	ATI3DCIF_ContextSetState
	ATI3DCIF_GetInfo
	ATI3DCIF_Init
	ATI3DCIF_RenderBegin
	ATI3DCIF_RenderEnd
	ATI3DCIF_RenderPrimList
	ATI3DCIF_RenderPrimStrip
	ATI3DCIF_RenderSwitch
	ATI3DCIF_Term
	ATI3DCIF_TexturePaletteCreate
	ATI3DCIF_TexturePaletteDestroy
	ATI3DCIF_TextureReg
	ATI3DCIF_TextureUnreg

	ATI3DCIF Data Types
	ATI3DCIF Fundamental Data Types
	C3D_3DCIFINFO
	C3D_CODEBOOKENTRY
	C3D_COLOR
	C3D_EACMP
	C3D_EADST
	C3D_EASEL
	C3D_EASRC
	C3D_EC
	C3D_ECI_TMAP_TYPE
	C3D_EPIXFMT
	C3D_EPRIM
	C3D_ERSID
	C3D_ESHADE
	C3D_ETEXCOMPFCN
	C3D_ETEXFILTER
	C3D_ETEXFMT
	C3D_ETEXOP
	C3D_ETLIGHT
	C3D_ETPERSPCOR
	C3D_EVERTEX
	C3D_EZCMP
	C3D_EZMODE
	C3D_HRC
	C3D_HTX
	C3D_HTXPAL
	C3D_PALETTENTRY
	C3D_PRSDATA
	C3D_RECT
	C3D_TLVERTEX
	C3D_TMAP
	C3D_VCF
	C3D_VF
	C3D_VLIST
	C3D_VSTRIP
	C3D_VTCF
	C3D_VTF

	Chapter 6
	3D RAGE / ATI3DCIF Porting and Performance Notes
	Introduction
	Triangle Size, Performance and Image Quality
	Porting Backgrounds and Scenery
	Game Objects
	Concurrency and Software Overhead
	Using the RAGE’s 2D Engine
	Additional Tips for Improving Performance
	Summary

